Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Papers: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
Нет описания правки
(→‎Periodic orbits: change link)
Строка 45: Строка 45:


=== Periodic orbits ===
=== Periodic orbits ===
* A. Glutsyk, Yu. Kudryashov. [http://www.dyn-sys.org/misc/bill-jmd.pdf "No planar billiard possesses an open set of quadrilateral trajectories"], submitted to [http://www.math.psu.edu/jmd/ Journal of Modern Dynamics].
* A. Glutsyk, Yu. Kudryashov. [http://www.dyn-sys.org/files/bill-jmd.pdf "No planar billiard possesses an open set of quadrilateral trajectories"], submitted to [http://www.math.psu.edu/jmd/ Journal of Modern Dynamics].

Версия от 00:09, 28 марта 2012

Foliations

Foliations in complex plane

Attractors & time averages

Thick attractors
  • Yu. Ilyashenko, Thick Attractors of Step Skew Products, Regular and Chaotic Dynamics, Vol. 15, Nos. 2-3, pp. 328-334
Invisible attractors
Other examples of pathological attractors
  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
Ittai Kan example
  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.
Special Ergodic Theorem


Lyapunov exponents

  • A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, Nonremovable Zero Lyapunov Exponents, Funkts. Anal. Prilozh., 39:1 (2005), 27–38
  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics

Slow-fast systems

Limit cycles

Periodic orbits