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Abstract
This paper deals with attractors of generic dynamical systems. We introduce
the notion of ε-invisible set, which is an open set of the phase space in which
almost all orbits spend on average a fraction of time no greater than ε. For
extraordinarily small values of ε (say, smaller than 2−100), these are large
neighbourhoods of some parts of the attractors in the phase space which an
observer virtually never sees when following a generic orbit.

For any n � 100, we construct a set Qn in the space of skew products
over a solenoid with the fibre a circle having the following properties. Any
map from Qn is a structurally stable diffeomorphism; the Lipschitz constants
of the map and its inverse are no greater than L (where L is a universal constant
that does not depend on n, say L < 100). Moreover, any map from Qn has a
2−n-invisible part of its attractor, whose size is comparable to that of the whole
attractor. The set Qn is a ball of radius O(n−2) in the space of skew products
with the C1 metric. It consists of structurally stable skew products.

Small perturbations of these skew products in the space of all
diffeomorphisms still have attractors with the same properties. Thus for all
such perturbations, a sizable portion of the attractor is almost never visited by
generic orbits and is practically never seen by the observer.

Mathematics Subject Classification: 35B41

1. Introduction

One of the major problems in the theory of dynamical systems is the study of the limit behaviour
of orbits. Most orbits tend to invariant sets called attractors. Knowledge of the attractors may
indicate the long term behaviour of the orbits.
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Yet it appears that large parts of the attractors may be practically invisible. In this paper
we describe an open set in the space of dynamical systems whose attractors have a large
unobservable part. Precise definitions follow.

1.1. Attractors and ε-invisible open sets

Let X be a metric measure space, with a metric d and a finite measure µ. This measure will
not necessarily be probabilistic, but we will assume that µ(X) � 1.

Often, but not always, X will be a compact smooth manifold with or without boundary.
In this case the metric is the geodesic distance and the measure is the Riemannian volume.

There are many different, nonequivalent definitions of attractors, some of which are
presented below. The following definitions all concern maps F : X → X which are
homeomorphic onto their image.

Definition 1 (Maximal attractor). An invariant set Amax of F is called a maximal attractor
in its neighbourhood provided that there exists a neighbourhood U of Amax such that

Amax =
∞⋂

n=0

Fn(U).

Definition 2 (Milnor attractor [15]). The Milnor attractor AM of F is the minimal invariant
closed set that contains the ω-limit sets of almost all points.

Definition 3 (Statistical attractor [1, 9]). The statistical attractor Astat of F is the minimal
closed set such that almost all orbits spend an average time of 1 in any neighbourhood of Astat.

Definition 4 (ε-invisible open set). An open set V ⊂ X is called ε-invisible if the orbits of
almost all points visit V with average frequency no greater than ε:

lim sup
N→∞

|{0 � k < N |Fk(x) ∈ V }|
N

� ε, for a.e. x. (1)

1.2. Skew products

Skew products may be called mini Universes of Dynamical Systems. They are a source of
many instructive examples, see for instance [12, 19]. Many properties observed for these
products appear to persist as properties of diffeomorphisms for open sets in various spaces of
dynamical systems. This heuristic principle was justified in [5, 6, 8]. In this context, an open
set of diffeomorphisms with nonhyperbolic invariant measures was found in [7, 14], while
other new robust properties of diffeomorphisms were described in [5, 6]. This paper is another
application of this heuristic principle.

In this section, X is a Cartesian product X = B × M with the natural projections
π : X → M along B, p : X → B along M . The set B is the base, while M is the
fibre. Both B and M are metric measure spaces. The distance between two points of X is, by
definition, the sum of the distances between their projections onto the base and onto the fibre.
The measure on X is the Cartesian product of the measures of the base and of the fibre.

Maps of the form

F : B × M → B × M, F(b, x) = (h(b), fb(x)) (2)

are called skew products on X. Denote by C1
p (p stands for product) the space of all skew

products on X, with distance given by

dC1
p
(F, F̃ ) = max

B
dC1(f ±1

b , f̃ ±1
b ). (3)
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Definition 5. A homeomorphism F of a metric space is called L-moderate if Lip F±1 � L

(here Lip denotes Lipschitz constant).

We shall consider only L-moderate maps F with L � 100, in order to guarantee that the
phenomenon of ε-invisibility is not produced by any extraordinary distortion in the maps F

or F−1.

1.3. Skew products over the Smale–Williams solenoid and the main result

Take R � 2, and let B = B(R) denote the solid torus

B = S1
y × D(R), S1

y = {y ∈ R/Z}, D(R) = {z ∈ C||z| � R}.
The solenoid map is defined as

h = hλ : B → B, (y, z) �→ (2y, e2π iy + λz), λ < 0.1. (4)

The exact values of the parameters R and λ are not crucial, since the dynamics of the map h

is the same regardless of their particular values.
Let us consider the Cartesian product X = B ×S1, where S1 = R/2Z. All skew products

in this section are over this Cartesian product, and the map h in the base B will always be the
solenoid map. Fix some L � 100, and let DL(X) (respectively, C1

p,L(X)) denote the space of
L-moderate smooth maps (respectively, smooth skew products). Our main result on attractors
is the following theorem.

Theorem 1 (Main Theorem). Consider any n � 100. Then there exists a ball Qn of radius
1/n2 in the space C1

p,L(X) with the distance equation (3) having the following property.
Any map G ∈ Qn ∩ C2(X) is structurally stable in D1(X), and has a statistical attractor
Astat = Astat(G) such that the following hold:

1. the projection π(Astat) ⊂ S1 is a circular arc such that[
6

n
, 1 − 2

n

]
⊂ π(Astat) ⊂ [0, 1]; (5)

2. the set V = π−1(0, 1
4 ) is ε-invisible for G with

ε = 2−n. (6)

Moreover, small perturbations of the maps from Qn in the space DL(X) of all
diffeomorphisms have statistical attractors with the same properties.

Remark 1. It is easy to construct a map with a sizable ε-invisible part of its attractor and with
distortion of order ε−1 (so with an enormous Lipschitz constant). Indeed, consider an irrational
rotation R of a circle. The statistical attractor of R is the whole circle. Take a small arc of
length ε and a coordinate change H : S1 → S1 that expands this arc to a semicircle U . Then
all the orbits of the map f = H ◦ R ◦ H−1 visit the semicircle U with frequency ε. Hence,
this large part of the attractor is ε-invisible. However, the map f has a Lipshitz constant of
order ε−1. We reject such examples, because they rely on extraordinarily large distortions.

In contrast, in theorem 1 we construct maps on a ‘human’ scale that produce ε-invisible
sets, for extraordinarily small ε. Indeed, our main theorem claims the existence of large
ε-invisible sets with ε arbitrarily small, when the Lipschitz constant of the maps in question is
uniformly bounded (say, by L = 100).
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Theorem 1 considers maps defined by ‘human-scale parameters of order n’. Intuitively,
this means that the maps contain parameters of order n or 1/n. Formally speaking, this means
that these maps are at a distance at least Cn−b from structurally unstable maps, for some b > 0.
In C1

p,L(X) we prove that we can take b = 2, while in DL(X) we conjecture that we can take
b = 4.

On the other hand, these maps have large ε-invisible parts of attractors for ε = 2−n. In
theorem 1, this part is equal to Astat ∩ V , and its size is comparable to the size of the whole
attractor. More precisely, the projection π(Astat ∩ V ) is an arc of about 1

4 of the total length of
the arc π(Astat). Roughly speaking, to visualize this part of the attractor, the observer would
have to pursue orbits for time intervals of order 2n. Even for n = 100, it is hard to imagine
such an experiment.

1.4. Rate of invisibility and distribution of SRB measures

For any compact Riemannian manifold X, with or without boundary, let D2
L(X) be the space

of diffeomorphisms f : X → X (onto or into) such that ||f ||C2 � L, and Lip(d2f ±1) � L.
This space is compact in the C2 metric by the Arzela–Ascoli theorem.

Suppose that diam X = 1. Denote by SL(X) the set of all structurally stable
diffeomorphisms inside D2

L(X). Let Sδ
L(X) be the closure of the set of those f ∈ SL(X),

whose δ-neighbourhood in C1-metric intersected with D2
L(X) belongs to SL(X). In other

words, Sδ
L(X) consists of structurally stable diffeomorphisms that are at least a distance δ

away (in the C1 metric) from structurally unstable maps.
For any structurally stable map f ∈ D2

L(X) and any c ∈ (0, 1), define the c-rate of
invisibility ic,X(f ) of the statistical attractor of f in the following way. Let B(p, c) ⊂ X be
the ball of radius c centred at p ∈ X. Define

ic,X(f ) := inf{ε| ∃p ∈ Astat(f ) such that B(p, c) is ε-invisible}.
Due to structural stability, all locally maximal invariant sets of any f ∈ SL(X) are hyperbolic.
In this case, the union of all maximal attractors in their neighbourhoods coincides with the
Milnor, statistical and minimal attractors [3]. Hence, the statistical attractor of f is at the same
time the support of the SRB measure µ∞. From proposition 1, it follows that

ic,X(f ) = inf
p

µ∞(B(p, c)),

as p ranges over the support of the SRB measure. Therefore, the c-rate of invisibility shows
just how small the SRB measure of a c-ball centred on the support can actually be.

The function

ic,X(δ) = min
Sδ

L(X)
ic,X(f )

is well defined. Indeed, the function ic,X(f ) is continuous in f , because of the continuous
dependence of the SRB measure on the hyperbolic map in the C2-topology. It is not difficult
to see that ic,X(δ) → 0 as δ → 0. The question is:

How rapidly does the rate of invisibility ic,X(δ) decrease with δ?

The answer depends on X, and is a new characteristic of the space of dynamical systems on
X. In contrast, we expect that the decrease in ic,X(δ) does not depend in an essential way on c.

Similar definitions may be given for vector fields and for other functional spaces inside
D2

L(X). The main examples are skew products and finite-parameter families.
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Figure 1. Saddle-node bifurcation on a circle.

Example 1. Saddle-node bifurcation on a circle. Consider a family of vector fields vδ on a
circle that have a saddle-node singular point for δ = 0 and no other singular points. For
postcritical values of the parameter δ > 0, the whole phase space consists of one periodic
orbit. The finitely smooth normal form of the family near the singular point is

ẋ = x2 + δ

1 + ax

for some a ∈ R [11]. The period of the postcritical orbit is O(δ− 1
2 ). The time spent in any ball

of radius c separated from zero (shadowed in figure 1) is O(c). Hence, the rate of invisibility
in the family vδ is O(δ

1
2 ).

Example 2. Slow-fast systems: the van der Pol equation. Consider the van der Pol family

ẋ = y − y3,

ẏ = δ(x − a).

For δ = 0 this system is structurally unstable. For δ > 0 it has an attracting van der Pol cycle.
The period of this cycle is O(δ−1). The large parts of this cycle close to the orbits y = c of
the fast system are O(δ)-invisible. Hence, for the van der Pol family, the rate of invisibility is
O(δ).

Conjecture 1. The rate of invisibility ic,S1(δ) for diffeomorphisms of a circle equals O(δ
1
2 ).

The rate of invisibility for flows on S2 equals O(δ).

Denote by Ic,X(δ) the rate of invisibility for skew products (namely, replace DL(X) by
C1

p,L(X) in the above definitions). Our main theorem shows that for X = T
2 × D (where D

is a 2-disc),

Ic,X(δ) < exp(−O(δ− 1
2 )).

Thus, the rate of invisibility may decrease as a stretched exponential. We expect that a similar
result holds for diffeomorphisms:

ic,X(δ) < exp(−O(δ−α))

for some α > 0. The approach that has been developed in this subsection was suggested by
Gorodetski.

The results of [10] give strong evidence to a conjecture that the rate of invisibility decreases
with the dimension k = dim X at least as

ic(δ) < exp(−δ−O(k)).
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2. Skew products over the Bernoulli shift

In this section we define and study skew products over the Bernoulli shift, which closely mimic
the dynamics of skew products over the solenoid.

2.1. Step and mild skew products over the Bernoulli shift

Let �2 be the space of all bi-infinite sequences of 0 and 1, endowed with the standard metric
d and ( 1

2 , 1
2 )-probability Bernoulli measure P . In other words, if we take ω, ω′ ∈ �2 given by

ω = . . . ω−n . . . ω0 . . . ωn . . .

ω′ = . . . ω′
−n . . . ω′

0 . . . ω′
n . . . ,

then

d(ω, ω′) = 2−n, where n = min{|k|, such that ωk 
= ω′
k}, (7)

P({ω, such that ωi1 = α1, ..., ωik = αk}) = 1

2k
, (8)

for any i1, ..., ik ∈ Z and any α1, ..., αk ∈ {0, 1}. Let σ : �2 → �2 be the Bernoulli shift

σ : ω �→ ω′, ω′
n = ωn+1.

A skew product over the Bernoulli shift is a map

G : �2 × M → �2 × M, (ω, x) �→ (σω, gω(x)), (9)

where the fibre maps gω are diffeomorphisms of the fibre onto itself. Let C1
p,L denote the space

of skew products (9), whose fibre maps gω and their inverses g−1
ω have Lipschitz constant no

greater than L.
An important class of skew products over the Bernoulli shift consists of the so-called step

skew products. Given two diffeomorphisms f0, f1 : S1 → S1, the step skew product over
these two diffeomorphisms is

F : �2 × M → �2 × M, (ω, x) �→ (σω, fω0(x)). (10)

Thus the fibre maps only depend on the digit ω0, and not on the whole sequence ω. In contrast to
step skew products, general skew products where the fibre maps depend on the whole sequence
ω will be called mild ones.

2.2. SRB measures and minimal attractors

Consider a metric measure space X. We begin with the definition of the (global) maximal
attractor, which is only slightly different from definition 1. Let G : X → X be homeomorphic
onto its image, but suppose its image is contained strictly in X. The (global) maximal attractor
of G is defined as:

Amax =
∞⋂

k=0

Gk(X). (11)

Moreover, a measure µ∞ is called a good measure of G (with respect to the measure µ of
X) if it is a limit point of a subsequence of average measures:

µ∞ = lim
n→∞

1

kn

kn−1∑
i=0

Gi
∗µ,

in the weak topology, see [4].
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The closure of the union of supports of all good measures of G is called the minimal
attractor, and it is contained in the statistical attractor (also see [4]). Thus the following
inclusions between attractors hold:

Amin ⊂ Astat ⊂ AM ⊂ Amax. (12)

An invariant measure µ∞ is called an SRB measure with respect to µ provided that
∫

X

ϕdµ∞ = lim
k→∞

1

k

k−1∑
i=0

ϕ(Gi (x)) (13)

for almost all x ∈ X and for all continuous functions ϕ ∈ C(X) (see [16]). If a good measure
is unique and ergodic, then it is an SRB measure.

The connection between an SRB measure and the ε-invisibility property mentioned in
definition 4 is the following:

Proposition 1. Consider X and G : X → X as above, and suppose that an SRB measure µ∞
exists. Then an open set V ⊂ X is ε-invisible if and only if

µ∞(V ) � ε.

Proof. This proposition immediately follows by letting ϕ be the characteristic function of
V in (13). Of course, the characteristic function is not continuous, but it can be sandwiched
between continuous functions arbitrarily tight. �

The classical definitions above traditionally apply to smooth manifolds X, either closed
or compact with boundary, for which the measure µ is compatible with the smooth structure
(a ‘Lebesgue measure’). In the above, we have extended these definitions to general metric
measure spaces.

Consider the metric measure space �2 × S1 and let π : �2 × S1 → S1 be the standard
projection. As before, C1

p,L is the space of skew products over the Bernoulli shift with fibre
S1, whose fibre maps and their inverses have Lipschitz constant at most L. The distance on
both these spaces is still defined by (3). We will now state the following analogue of the main
theorem 1 for (mild) skew products:

Theorem 2. Consider any n � 100. Then there exists a ball Rn of radius 1/n2 in the space
C1

p,L with the following property. Any map G ∈ Rn has a statistical attractor Astat = Astat(G)

such that the following hold:

1. the projection π(Astat) ⊂ S1 has the property

π(Astat) ⊂ [0, 1]; (14)

2. the set V = π−1(0, 1
4 ) is ε-invisible for G with

ε = 2−n. (15)

2.3. North–South skew products

The skew products for which we will verify theorem 2 will be from the open set of so-called
North–South skew products, defined below.

Definition 6. A skew product G : �2 × S1 → �2 × S1 is called a North–South skew product
if there exist two non-intersecting closed arcs I, J ⊂ S1 such that all the fibre maps gω have
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the following properties:

1. Every map gω has one attractor and one repeller, both hyperbolic.
2. All the attractors of the maps gω lie strictly inside I .
3. All the repellers of the maps gω lie strictly inside J .
4. All the maps gω bring I into itself and are contracting on I uniformly in ω. Moreover, the

maps g−1
ω |I are expanding.

5. All the inverse maps g−1
ω bring J into itself and are contracting on J uniformly in ω.

Moreover, the maps gω|J are expanding.
6. The maps gω and g−1

ω depend continuously on ω in the C0 topology.

In the same way, one can define North–South skew products over any map h : B → B

with the fibre a circle.

2.4. Maximal attractors of North–South skew products

Theorem 3. Let G : �2 × S1 → �2 × S1 be a North–South skew product over the Bernoulli
shift. Then we have

(a) The statistical attractor of G is the graph of a continuous function γ = γG : �2 → I .
The projection p|Astat : Astat → �2 is a bijection. Under this bijection, G|Astat becomes
conjugated to the Bernoulli shift on �2:

Astat
G−−−−→ Astat

p

� p

�
�2 σ−−−−→ �2

(16)

(b) There exists an SRB measure µ∞ on �2 × S1. This measure is concentrated on Astat

and is precisely the pull-back of the Bernoulli measure P on �2 under the bijection
p|Astat : Astat → �2.

Proof. By assumption 4 of definition 6, the map G brings �2 × I strictly inside itself. We can
thus consider the global maximal attractor of G|�2 × I :

A∗
max =

∞⋂
k=1

Gk(�2 × I ). (17)

We will later prove that

A∗
max = Astat. (18)

Proposition 2. The attractor A∗
max is the graph of a function γ : �2 → I .

Proof. This follows from assumption 4 in the definition of North–South skew products. In
more detail, a point (ω, x) belongs to A∗

max if and only if (ω, x) belongs to Gk(�2 × I ) for all
k � 1. This is equivalent to

x ∈ gσ−1ω ◦ · · · ◦ gσ−kω(I ) =: Ik(ω) (19)

for all k � 1. By assumption 4, for any fixed ω, the segments Ik(ω) are nested and shrinking
as k → ∞. Hence, in any fibre {ω} × S1, the maximal attractor A∗

max has exactly one point

x(ω) =
∞⋂

k=1

Ik(ω).

Define the map γ : �2 → I, ω �→ x(ω). By this definition, A∗
max is just the graph

of γ . �
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Proposition 3. The function γ defined above is continuous.

Proof. Consider the notation

gk,ω = gσ−1ω ◦ gσ−2ω ◦ . . . ◦ gσ−kω.

By (19), we have

γ (ω) =
∞⋂

k=0

gk,ω(I ).

Fix a sequence ω, fix δ > 0 and m ∈ N. Let ω′ be so close to ω that

||gσ−kω − gσ−kω′ || � δ

for all k = 1, . . . , m. In the rest of this proof, all norms will refer to the C0 norm. Write

δk = ||gk,ω − gk,ω′ ||.
Then, for k � m,

δk = ||gk−1,ω ◦ gσ−kω − gk−1,ω′ ◦ gσ−kω′ || � T1 + T2,

where

T1 = ||gk−1,ω ◦ gσ−kω − gk−1,ω ◦ gσ−kω′ ||,
T2 = ||gk−1,ω ◦ gσ−kω′ − gk−1,ω′ ◦ gσ−kω′ ||.

Let l < 1 be a common contraction coefficient for all the fibre maps gω|I . Then we have

T1 � lk−1δ,

T2 � δk−1.

The second inequality holds because the fibre maps bring I into itself and the shift of the
argument does not change the C0 norm. Therefore, we have

δk � δk−1 + lk−1δ.

Iterating the above inequality gives us

δm � δ + lδ + · · · + lm−1δ <
δ

1 − l
.

Therefore, the segments Im(ω), Im(ω′) have length no greater than lm|I | and the distance
between their corresponding endpoints is no greater than δ/(1−l). But this holds for arbitrarily
small δ and arbitrarily large m when ω and ω′ are close enough. Therefore, (19) implies that
γ (ω) and γ (ω′) can be made arbitrarily close by making ω, ω′ close enough. This precisely
proves the continuity of γ . �

2.5. Statistical attractors of North–South skew products

Let us now prove (18). The proof relies on the following lemma:

Lemma 1. For almost all (ω, x) ∈ �2 × S1 there exists k = k(ω, x) > 0 such that
Gk(ω, x) ∈ �2 × I .
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Proof. On S1 \ (I ∪ J ) all the fibre maps gω push points away from J and into I . Hence, the
orbit of a point (ω, x) will come to �2 × I if and only if there exists k such that

Gk(ω, x) ∈ �2 × (S1 \ J ).

This fails to happen only for elements of the set

S =
∞⋂

k=0

G−k(�2 × J ).

We will show that the measure of S is zero. Consider the inverse map

G−1 : (ω, x) �→ (σ−1ω, g−1
σ−1ω

(x)).

Once again, it is a North–South skew product but the segments I and J now play the opposite
roles: J is contracting and I is expanding. By the previous section, the maximal attractor S of
G−1|�2 × J is the graph of a continuous function γ − : �2 → J . It therefore intersects any
fibre {ω} × S1 at exactly one point. By the Fubini theorem, the measure of S in X is therefore
zero. �

The above lemma shows that the ω-limit sets of almost all points in �2 × S1 belong to
A∗

max. Hence A∗
max is the Milnor attractor of G, and thus contains Astat. We will now prove

that A∗
max is precisely equal to Astat.

Consider any good measure µ∞ of G. For any measurable set K ⊂ �2, we have

G−1(K × S1) = σ−1(K) × S1

and therefore G∗µ(K × S1) = µ(σ−1(K) × S1) = µ(K × S1). Iterating this will give us
Gk

∗µ(K × S1) = µ(K × S1) = P(K) for all k. By the definition of good measure this forces

µ∞(K × S1) = P(K). (20)

But any good measure is supported on Astat, and therefore on A∗
max. This and (20) imply that

µ∞ must be the push-forward of P under the isomorphism (p|A∗
max)

−1. In particular, the
support of µ∞ is the whole of A∗

max.
By the above, the only possible good measure is µ∞ given by (20). Its support A∗

max
therefore coincides with the minimal attractor Amin. Therefore, by (12), we have that

Amin = Astat = A∗
max.

This proves statement (a) of theorem 3.
Let us now prove statement (b) of theorem 3. We must now show that µ∞ = (p|Astat)

−1
∗ P

is an SRB measure (in particular, our proof will imply that µ∞ is a good measure). To this end,
we must show that for almost all (ω, x) ∈ �2×S1 and any continuous function ϕ ∈ C(�2×S1)

we have

lim
k→∞

1

k

k−1∑
i=0

ϕ(Gi(ω, x)) =
∫

ϕdµ∞. (21)

By lemma 1, we may restrict attention to x ∈ I . Then it is easy to note that

dist(Gk(ω, x), Gk(ω, γ (ω))) → 0

as k → ∞, uniformly in ω and in x. By the continuity of ϕ this implies

ϕ(Gk(ω, x)) − ϕ(Gk(ω, γ (ω))) → 0.

Therefore to prove (21), it is enough to prove it for x = γ (ω), i.e.

lim
k→∞

1

k

k−1∑
i=0

ϕ(Gi(ω, γ (ω))) =
∫

ϕdµ∞. (22)
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Since p : Astat → �2 is an isomorphism, the function ϕ̃ = ϕ ◦ (p|Astat)
−1 is continuous

on �2. Therefore, (22) is equivalent to

lim
k→∞

1

k

k−1∑
i=0

ϕ̃(σ iω) =
∫

�2
ϕ̃dP

for almost all ω. This statement is just the ergodicity of σ , which is a well-known
result. We have thus proven that µ∞ is an SRB measure, and this concludes the proof of
theorem 3. �

2.6. Large ε-invisible parts of attractors for skew products over the Bernoulli shift

In this section we will complete the proof of theorem 2. Recall that we have fixed
n � 100. We shall consider a particular North–South step skew product F , whose fibre
maps f0, f1 : S1 → S1 satisfy the properties listed below:

1. The segment I in definition 6 of North–South skew products is [0, 1] and

f0|I =
(

1 − 1

3n

)
x +

1

n2
, f1|I = 1

4
x +

3

4

(
1 − 1

n

)
. (23)

The attractors of f0 and f1 are 3/n and 1 − (1/n), respectively.
2. The segment J in definition 6 of North–South skew products is [− 2

3 , − 1
3 ] and f0|J =

f1|J = (x �→ 2x + 1
2 ).

3. In between the arcs I and J , f0, f1 define a ‘one way’ motion away from J towards I :

fj (x) � x +
1

n2
, for x ∈

[
−1

3
, 0

]

fj (x) � x − 1

n2
, for x ∈

[
−1, −2

3

]
.

It is easy to see that any step skew product with these fibre maps is North–South, as in
definition 6.

Proposition 4. Consider the ball Rn of radius 1/n2 around F in the space C1
p,L of skew

products over the Bernoulli shift. By definition, this ball consists of skew products G such that

d(F, G) = max
ω∈�2

dC1(f ±1
ω , g±1

ω ) � 1

n2
. (24)

Then any map G from this ball is a north–south skew product, where the segments I and J

from definition 6 are [0, 1] and [− 2
3 , − 1

3 ], respectively.

Proof. Consider any ω ∈ �2 with ω0 = 0. Then the fibre map gω of G is 1
n2 -close to f0 in

C1. Hence,

1 > 1 − 1

3n
+

1

n2
> g′

ω|I > 1 − 1

3n
− 1

n2
> 1 − 1

2n

because n < 100. Moreover,

f0(0) = 1

n2
, f0(1) = 1 − 1

3n
+

1

n2
.

Hence, gω(0) > 0, gω(1) < 1. Therefore, gω(I ) ⊂ I , gω is strictly contracting on
I and has a unique attractor a(ω) on I . Moreover, f0(6/n) = (6/n) − (1/n2). Hence,
gω(6/n) < (6/n). Therefore, a(ω) ∈ [0, 6/n].
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In the same way we prove that gω|J has a unique repeller in J , and gω|J is expanding;
hence, g−1

ω (J ) ⊂ J for any ω ∈ �2. Finally, the map gω has the property that gω(x) > x for
x ∈ [− 1

3 , 0] and that gω(x) < x for x ∈ [−1, − 2
3 ], for any ω ∈ �2.

Consider now ω with ω0 = 1. Then gω is (1/n2)-close in C1 to f1. In the same way as
above, we prove that gω has a unique attractor in I , contracts on I and brings I into itself. All
other properties of gω are proved exactly as in the case ω0 = 0. So the maps gω satisfy the
requirements of definition 6, and thus G is a North–South skew product. �

Proof of theorem 2. Any map G ∈ Rn is a North–South skew product by proposition 4.
Hence, we can apply theorem 3, and this immediately implies statement 1 of theorem 2. Let
us now prove statement 2, namely that the set V = π−1(0, 1

4 ) is ε-invisible for any G ∈ Rn.
We need to check that almost every point (ω, x) ∈ �2 ×S1 visits V with frequency no greater
than ε. By lemma 1, it is enough to consider (ω, x) ∈ �2 × I .

Proposition 5. Let k > n and (ω, x) ∈ �2 × I such that Gk(ω, x) ∈ V . Then

(ωk−n . . . ωk−1) = (0 . . . 0).

Proof. Let j � k − 1 be minimal such that ωk−j = 1. If such a j does not exist or j > n, then
the proposition is proved (since we assumed k > n). Suppose by contraposition that j � n.
Then the digit at position zero of the sequence σ k−jω is 1. Thus the fibre map gσk−j ω is 1

n2

close to f1, implying

1 > gσk−j ω(0) > f1(0) − 1

n2
>

3

4
− 1

n
.

Hence,

1 > π(Gk−j+1(ω, x)) = gσk−j ω(π(Gk−j (ω, x))) >
3

4
− 1

n
.

Now we claim that for all x ∈ [ 1
4 , 3

4 ] and ω ∈ �2, we have

fj (x) > x

(
1 − 1

2n

)
+

1

n2
. (25)

This follows readily from (23) by elementary calculations. Together with (24), this implies

gω̃(x) > x

(
1 − 1

2n

)
, ∀ω̃ ∈ �2. (26)

We can iterate this inequality and get

π(Gk(ω, x)) = gσk−1ω ◦ ... ◦ gσk−j+1ω(π(Gk−j+1(ω, x))) >

(
3

4
− 1

n

) (
1 − 1

2n

)j−1

>

(
3

4
− 1

n

) (
1 − 1

2n

)n

.

One sees that the right-hand side of the above inequality is approximated by 3
4
√

e
> 1

4 . A more
accurate estimate would indicate that

π(Gk(ω, x)) >

(
3

4
− 1

n

) (
1 − 1

2n

)n

>
1

4
for n � 100. This contradicts the assumption of the proposition. �

The ergodicity of the Bernoulli shift implies that the subword (0 . . . 0) (n zeroes) is met in
almost all sequences ω with frequency 2−n. This and proposition 5 imply that almost all orbits
visit V with frequency at most ε = 2−n. Hence V is ε-invisible indeed, and this concludes the
proof of theorem 2. �
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3. Skew products over the solenoid

In this section we will prove theorem 1. Our approach will closely mirror the proof of theorem 2
of the previous section.

3.1. The symbolic dynamics and SRB measure for the solenoid map

Let h be the solenoid map (4). Denote by � the maximal attractor of this map, which is called
the Smale–Williams solenoid. Let �2

1 ⊂ �2 be the set of infinite sequences of 0’s and 1’s
without a tail of 1’s infinitely to the right (i.e. sequences which have 0’s arbitrarily far to the
right). Its metric and measure are inherited from the space �2. Consider the fate map

� : � → �2
1 , �(b) = (...ω−1ω0ω1...), (27)

where we define ωk = 0 if y(hk(b)) ∈ [0, 1
2 ) and ωk = 1 if y(hk(b)) ∈ [ 1

2 , 1). The map � is a
bijection with a continuous inverse. Moreover, it conjugates the map h|� with the Bernoulli
shift:

�
h−−−−→ �

�

� �

�
�2

1
σ−−−−→ �2

1

(28)

In addition to the fate map �, we can define the ‘forward fate map’ �+(b) = (ω0ω1...),
with ω0, ω1, ... described as above. The map �+(b) is now defined for all b in the solid
torus B, and it only depends on y(b). More generally, if h−k(b) exists, then we can define
�+

−k(b) = (ω−k...ω0ω1...).
It is well known that the SRB measure on � is the pullback of the Bernoulli measure on

�2
1 under the fate map:

µ� = �∗P.

3.2. Attractors of North–South skew products over the solenoid

Let X = B × S1, where B is the solid torus. A North–South skew product over the solenoid
will refer to a skew product that satisfies the properties of definition 6 with (�2, ω) replaced
by (B, b).

Theorem 4. Let G : X → X be a North–South skew product over the solenoid. Then

(a) The statistical attractor of G lies inside � × I , and is the graph of a continuous map
γ : � → I . Under the projection homeomorphism p : Astat → �, the restriction G|Astat

becomes conjugated to the solenoid map on �:

Astat
G−−−−→ Astat

p

� p

�
�

h−−−−→ �

(29)

(b) There exists an SRB measure µ∞ on X. This measure is concentrated on Astat and
is precisely the pull-back of the Bernoulli measure P on �2

1 under the isomorphism
� ◦ p : Astat → �2

1 .
(c) The skew product G is structurally stable in D1(X).

This theorem is proved in the same way as theorem 3 with a single essential difference:
we need new arguments to prove the analogue of lemma 1. This will be done in lemma 3 of
the next subsection.
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3.3. Hyperbolicity

Lemma 2. Let G : X → X be a North–South skew product over the solenoid. Then the
invariant sets

A =
∞⋂

k=0

Gk(B × I ), S =
∞⋂

k=0

G−k(� × J )

are hyperbolic.

Remark 2. The union A∪S is the non-wandering set of G. The set A is a hyperbolic attractor
of index 1, while S is a locally maximal hyperbolic set of index 2.

This lemma is a technical result that will be proved shortly. For now, denote by WsS the
set of all q ∈ X that attract to S under G:

WsS = {q ∈ X|d(Gk(q), S) → 0 as k → ∞}.
We claim that set WsS has measure 0:

mes WsS = 0. (30)

This follows from lemma 2 and Bowen’s theorem:

Theorem 5 (Bowen [2]). Consider a C2 diffeomorphism of a compact manifold, and a
hyperbolic invariant set S of this diffeomorphism which is not a maximal attractor in its
neighbourhood. Then the attracting set WsS has Lebesgue measure 0.

Now we can prove the following analogue of lemma 1:

Lemma 3. For almost all (b, x) ∈ B×S1, there exists k = k(b, x) such that Gk(b, x) ∈ B×I .

Proof. Note that if the orbit of the point (b, x) eventually escaped B × J , it would be pushed
towards B × I , and finally inside B × I . Therefore the statement of the lemma fails only for
points whose orbit stays inside B × J forever, i.e. for points of the set

T =
∞⋂

k=0

G−k(B × J ).

But T ⊂ WsS, because any point whose orbit stays forever in B × J will be attracted to
� × J (since B is attracted to �), and thus will be attracted to S. This and (30) imply that
mes T = 0. This concludes the proof of the lemma, and with it the proof of statements (a) and
(b) of theorem 4. �

All that remains to prove is lemma 2. Let us recall the definition of hyperbolic sets in
the form of the cones condition and then check it for the invariant sets A and S. Here we
use [17, 13].

For any q ∈ X and any subspace E ⊂ TqX, define the cone with the axes space E and
opening α to be the set

C(q, E, α) = {v ∈ TqX| tan 
 (v, E) � α}.
Suppose that A is an invariant set of a diffeomorphism f : X → X. We say that (A, f )

satisfy the cones condition if the following holds: there exist two values α±, two continuous
families of cones on A:

C+(q) = C(q, E+, α+), C−(q) = C(q, E−, α−), q ∈ A
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and two numbers

0 < λ < 1 < µ

such that for any q ∈ A the following relations and inequalities hold:

dfqC
+(q) ⊂ C+(f (q)), df −1

q C−(q) ⊂ C−(f −1(q)), (31)

|dfqv| � µ|v|, v ∈ C+(q), (32)

|df −1
q v| � λ−1|v|, v ∈ C−(q).

Definition 7. A compact invariant setAof a diffeomorphismf that satisfies the cones condition
above is called hyperbolic.

Proof of lemma 2. Recall that the coordinates on B are (y, z), and the coordinate on the fibre
S1 is x. The cones condition will be checked in a special metric: we will rescale the coordinates
x and z and then use the Euclidian metric in the new coordinates. This trick works because
the Jacobian matrix of the skew product over the solenoid is block triangular.

Let x̃ = η2x, z̃ = ηz be new coordinates. Let ds2 = dx̃2 + dy2 + dz̃2. Then, for η > 0
small, the matrices dG and dG−1 will be almost diagonal:

dG =

2

λ

g′
b


 + O(η), (33)

dG−1 =




1

2
λ−1

1

g′
b ◦ g−1

b


 + O(η). (34)

Conditions (31) and inequalities (32) are open, so they persist under small perturbations
of the operators dG, dG−1. Therefore, it is sufficient to check them for the first diagonal terms
in (33), (34), and then they will immediately follow for dG, dG−1 for η small enough.

Proposition 6. Consider the following decomposition of a vector space: E = E+ ⊕ E−. Let
A : E → E be a block diagonal operator corresponding to this decomposition:

A =
(

C

D

)
,

with ||C−1|| � µ−1, ||D|| � λ, 0 < λ < 1 < µ. Then the cone

C+ = (0, E+, α) = {(v+, v−) ∈ E such that |v−| � α|v+|}
for small α satisfies the following analogues of (31) and (32):

AC+ ⊂ C+, (35)

|Av| � µ√
1 + α2

|v| ∀v ∈ C+. (36)

For α small enough, the factor µ/
√

1 + α2 will be greater than 1.
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Proof. The proof is immediate. Let v = (v+, v−) be the decomposition corresponding to
E = E+ ⊕ E−. Then for any v ∈ C+,

|(Av)−| = |Dv−| � λ|v−| � λα|v+| <
λ

µ
α|Cv+| � α|Cv+| = α|(Av)+|.

This proves (35). On the other hand, for any v ∈ C+,

|Av| = |(Cv+, Dv−)| � |Cv+| � µ|v+| � µ√
1 + α2

|v|.

This proves (36). �
We will now prove that the invariant set A of lemma 2 satisfies the cones condition. Take

any q = (b, x) ∈ A. Consider

E = TqX = E+ ⊕ E−, E+ = R
∂

∂y
, E− = C

∂

∂z
⊕ R

∂

∂x
.

Define

C : E+ → E+, C := diag (2);
D : E− → E−, D = diag (λ, λ, g′

b(x)).

Since x ∈ I , we have g′
b(x) < 1. This splitting and these operators satisfy the assumptions of

proposition 6. This implies the statement of lemma 2 for dG and C+ on A.
Now let us show that the set S satisfies the cones condition. Take any q = (b, x) ∈ S,

and consider

E = TqX = E+ ⊕ E−, E+ = R
∂

∂y
+ R

∂

∂x
, E− = C

∂

∂z
.

Take

C : E+ → E+, C = diag (2, g′
b(x)),

D : E− → E−, D = diag (λ, λ).

As x ⊂ J , we have g′
b(x) > 1. Hence, this splitting and these operators satisfy the assumptions

of proposition 6 again. This implies lemma 2 for dG and C+ on S.
Similar statements for dG−1 and C− on A and S are proved in exactly the same way. This

concludes the proof of lemma 2. �
To conclude the proof of theorem 4, it remains to establish statement (c): the structural

stability of the map G in D1(X). According to the criterion of structural stability, we need to
check two things:

1. the non-wandering set of G is hyperbolic and periodic orbits are dense in it (Axiom A);
2. the stable and unstable manifolds of the non-wandering points are transversal.

The first statement is already justified. Indeed, we have shown that the non-wandering
set of G is the union of the surfaces A and S defined in lemma 2, where it is also claimed that
this set is hyperbolic. The dynamics on A and S is conjugate to the Bernoulli shift, which is
known to have a dense set of periodic points.

It remains to check the transversality of the invariant manifolds. Note that the unstable
manifolds of the points p ∈ A belong to A. Indeed, the complete orbits of these points are
well defined and belong to the basin of the attraction of A, even to B × I . Hence, they belong
to the maximal attractor of G|B × I which is A. The same argument proves that the stable
manifolds of the points of S belong to S. This implies that stable and unstable manifolds of
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the non-wandering points p and q of G may have a non-empty intersection only if these two
points belong simultaneously to A or to S.

Consider the case in which p, q ∈ A; the case p, q ∈ S is treated in the same way.
The desired transversality follows from the cones condition: the tangent planes to stable and
unstable manifolds of the non-wandering points in A have complementary dimensions and
belong to the stable and unstable cones in the tangent space to X. These cones have zero
intersection. This completes the proof of theorem 4.

3.4. Almost step skew products over the solenoid

We now construct an ‘almost step’ skew product over the solenoid, whose attractor has a large
invisible part. Naively, a step skew product over the solenoid would be a diffeomorphism F as
in (2), where the fibre maps fb depend on the digit �(b)0 only. However, if we set fb = f�(b)0

for some fixed diffeomorphisms f0, f1 : S1 → S1, the skew product would be discontinuous
at y(b) ∈ {0, 1

2 } ⊂ S1. We must fix this discontinuity.
Consider two diffeomorphisms f0, f1 : S1 → S1, and an isotopy

ft : S1 → S1, t ∈ [0, 1]

between them. If f0, f1 are both orientation preserving, then we can (and always will) take
ft = (1 − t2)f0 + t2f1. The choice of the isotopy ft above makes this family C1 in y. In this
section, numbers in [0, 1) are written in binary representation. For y ∈ [0, 1), define

fy :=




f0, for y ∈ [0, 0.011);
f8y−3, for y ∈ [0.011, 0.1);
f1, for y ∈ [0.1, 0.111);
f8−8y, for y ∈ [0.111, 1).

(37)

The almost step skew product over the solenoid, corresponding to the fibre maps f0, f1, is
defined as

F : X → X, F(b, x) = (h(b), fy(b)(x)) (38)

If f0 and f1 satisfy the properties of definition 6, then F will be a North–South skew product,
see figure 2. Since we cannot visualize the four-dimensional phase space, we show in this
figure the map

F ′ : S1
y × I → S1

y × I, (y, x) �→ (y, fy(x)).

Remark 3. The main feature of almost step skew products is the following. Consider a word
w = (ω0 . . . ωk+1) that contains no cluster 11. Consider a sequence ω with the subword w

starting at the zero position. Let b = �−1(ω). Then

fhk−1(b) ◦ . . . ◦ fb = fωk−1 ◦ . . . ◦ fω0 . (39)

Indeed, the binary expansion of y(hi(b)), for any 0 � i � k − 1, starts with the combination
ωiωi+1ωi+2 which is different from 011 or 111. Hence, by definition, fhi(b) = fωi

.

Now fix once and for all f0, f1 : S1 → S1 to be the two diffeomorphisms of section 2.6,
and let F be the almost step skew product over the solenoid corresponding to these two fibre
maps. Consider the ball Qn of radius 1/n2 centred at F in the space C1

p,L(X) of skew products
over the solenoid. By definition, this ball consists of skew products:

G : B × S1 → B × S1, G(b, x) = (h(b), gb(x))

which satisfy

max
B

dC1(f ±1
b , g±1

b ) � 1

n2
. (40)
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Figure 2. Fibre maps of an almost step skew product.

Note that a linear homotopy between two maps f0, f1 consists of North–South skew
product diffeomorphisms of the circle. Namely, for any τ ∈ (0, 1), the map fτ =
(1 − τ)f0 + τf1 has a unique attractor in I = [0, 1] and is contracting on I , it has a unique
repeller in J and is expanding on J , and has no other fixed points. Hence, F is a North–South
skew product.

Proposition 7. Let Qn be the same ball as above. Then any map G ∈ Qn is a North–South
skew product over the solenoid map.

The proof is elementary and very close to that of proposition 4, so we omit it.

Proof of theorem 1. Take any G ∈ Qn. By proposition 7, theorem 4 is applicable. Therefore,
Astat is homeomorphic to the solenoid �, hence connected. Therefore, π(Astat) ⊂ S1 is
connected and therefore an arc. By theorem 4,

Astat =
∞⋂

k=0

Gk(B × I ). (41)

This readily implies the right inclusion π(Astat) ⊂ I = [0, 1] from (5).
To prove the left inclusion π(Astat) ⊃ [ 6

n
, 1 − (2/n)], note that for any b with �(b)0 = 0,

the attractor a(b) of the fibre map gb is close to that of f0, and therefore belongs to (0, 6/n).
Denote by b0 the point with the fate �(b0) = (. . . 0 . . .). Then the attractor of gb0 belongs to
(0, (6/n)).

For any b such that �(b)0 = 1, �(b)1 = 0, the maps gb, gh(b) are close to f1, f0,
respectively. For these maps gh(b) ◦ gb([1 − (2/n), 1]) ⊂ [

1 − 2
n
, 1

]
. Denote by b10 the point

with the fate �(b10) = (. . . 1010 . . .). Then the attractor of map gb10 belongs to (1− (2/n), 1).
The point q0(G) := (b0, a(b0)) is a fixed point of G|B × I . The point q10(G) :=

(b10, a(b10)) is a periodic point of G|B × I. By (41), both of these points belong to Astat.
Hence, the points a(b0) and a(b10) belong to π(Astat). But the attractor Astat is homeomorphic
to the solenoid by theorem 4, hence connected. Therefore,

π(Astat) ⊃ [a(b0), a(b10)] ⊃
[

6

n
, 1 − 2

n

]
.

This proves the left inclusion in (5).
All that is left is to show that the set V = π−1(0, 1

4 ) is ε-invisible for ε = 2−n. In other
words, we must show that the orbits of almost all points (b, x) ∈ B ×S1 visit V with frequency
at most ε. By lemma 3, we may restrict attention to (b, x) ∈ B × I . Let W be the set of finite
words of length 2n which do not contain the two-digit sequence 10. These words have the
form 0...01...1. The cardinality of W is 2n + 1.
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Proposition 8. Let k � 2n, (b, x) ∈ B × I and suppose that Gk(b, x) ∈ V . If ω = �+(b),
then

(ωk−2n . . . ωk−1) ∈ W.

Proof. Suppose by contraposition that the conclusion of the Proposition fails. Then let j � 2n

be minimal such that ωk−jωk−j+1 = 10. Therefore, ghk−j b is 1/n2 close to f1. This implies
that

π(Gk−j+1(b, x)) = ghk−j (b)(π(Gk−j (b, x))) >
3

4
− 1

n
. (42)

Note that inequality (25) persists under linear homotopy. Hence, it holds for any fibre map fb

of F . This implies a similar statement for fibre maps of G:

gb̃(x) > x

(
1 − 1

2n

)
, ∀b̃ ∈ B. (43)

Now, applying (43) inductively, we get

π(Gk(b, x)) = ghk−1b ◦ ... ◦ ghk−j+1b(π(Gk−j+1(b, x))) >

(
3

4
− 1

n

) (
1 − 1

2n

)j−1

>

(
3

4
− 1

n

) (
1 − 1

2n

)2n

.

One sees that the right-hand side of the above inequality is approximated by (3/4e) > 1
4 . A

more accurate estimate would indicate that

π(Gk(ω, x)) >

(
3

4
− 1

n

) (
1 − 1

2n

)2n

>
1

4

for n � 100. This contradicts the assumption of the proposition. �

The ergodicity of the Bernoulli shift implies that subwords in W are met in almost all
forward sequences ω = (ω0ω1ω2...) with frequency 2−2n. But almost all sequences ω

correspond under �+ to almost all b ∈ B. Thus we conclude that, for almost all b ∈ B,
subwords in W are met in �+(b) with frequency at most (2n + 1) · 2−2n < 2−n = ε. This
and proposition 8 imply that almost all orbits visit V with frequency at most ε, hence V is
ε-invisible. �

4. Perturbations

Here we complete the proof of our main result. In the previous subsection, we have proved
the assertions of theorem 1 for skew products G ∈ Qn. Now we wish to show that the same
assertions hold for all nearby diffeomorphisms H ∈ DL(X). In other words, statements 1 and
2 of theorem 1 hold for an open set inside DL(X) that contains Qn.

Fix any G ∈ Qn, and consider any H ∈ DL(X) which is C1 close to it. Recall that
I = [0, 1]. Consider first the maximal attractor of H|B × I :

A∗
max(H) =

∞⋂
k=0

Hk(B × I )

This attractor is connected because B × I is connected. It contains all the complete orbits of
H, and in particular it contains fixed points and periodic orbits.
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Let q0(G) and q10(G) be the fixed and periodic points of G defined in the proof of theorem 1.
They are both hyperbolic, and thus persist under small perturbations of G. Hence, the map H
has a fixed point q0(H) and a periodic point q10(H) close to q0(G) and q10(G), respectively. If
H is chosen sufficiently close to G, we will have

π(q0(H)) ∈
(

0,
6

n

)
, π(q10(H)) ∈

(
1 − 1

2n
, 1

)
.

Since q0(H), q10(H) ∈ π(A∗
max(H)) and A∗

max(H) is connected, it follows that A∗
max(H) is a

circular arc such that[
6

n
, 1 − 2

n

]
⊂ A∗

max(H) ⊂ [0, 1]. (44)

By the structural stability of the hyperbolic attractors, A∗
max(H) is hyperbolic. Since H ∈ C2,

the theorem due to Gorodetski [3] gives

A∗
max(H) = Astat(H).

Hence, (44) proves conclusion 1 of theorem 1.
As for conclusion 2, let µG

∞ denote the SRB measure for G (which is described in
theorem 4). By statement 2 of theorem 1 and proposition 1, it follows that

µG
∞

(
π−1

(
0,

1

4

))
� ε.

The Ruelle theorem on the differentiability of the SRB measure [18] implies that any small
perturbation H of G has an SRB measure µH

∞, and that this measure depends differentiably on
H. In particular, it follows that for H close enough to G we will still have

µH
∞

(
π−1

(
0,

1

4

))
� ε.

By applying proposition 1 again, it follows that π−1(0, 1
4 ) is ε-invisible for H.
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