Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Курсы в МГУ/Просеминар 2014/07.11.2014

Материал из DSWiki
Версия от 04:46, 6 ноября 2014; Nataliya Goncharuk (обсуждение | вклад) (Новая страница: «== Д.Зубов, "Гиперболические диффеоморфизмы тора и (топологические) марковские цепи"== На …»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Д.Зубов, "Гиперболические диффеоморфизмы тора и (топологические) марковские цепи"

На прошлом занятии мы научились кодировать отображение удвоения окружности. Оказывается, что символическое кодирование является полезным инструментом для работы с более сложными динамическими системами. Можно рассматривать произвольное отображение множества X в себя, и кодировать его орбиты, разбивая X на конечное число подмножеств и определяя, какому подмножеству принадлежит каждая итерация точки x из X. Получается некоторая динамическая система на множестве последовательностей из конечного числа символов.

Важным примером символических динамических систем являются топологические цепи Маркова.

Пусть f - гомеоморфизм множества X на себя. Если удачно подобрать разбиение, то его можно сопрячь с некоторой цепью Маркова - такие разбиения называются марковскими. Мы увидим, как это делать, на примере линейного отображения тора в себя, известного как Arnold cat map, а заодно рассмотрим его некоторые хаотические свойства.