Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Кольцо Эрмана

Материал из DSWiki
Перейти к навигацииПерейти к поиску

Кольцо Эрмана — в голоморфной динамике, один из типов неподвижной или периодической компоненты связности области Фату. Такая компонента связности топологически эквивалентна кольцу, а динамика отображения (или его итерации первого возвращения, в случае периодической компоненты) должна быть сопряжена иррациональному повороту этого кольца.

Конструкция

Одним из способов построения отображения, одна из компонент множества Фату которого оказывается кольцом Эрмана, основан на рассмотрении произведений Бляшке. А именно, произведения Бляшке — отображения вида

<math>

f(z)=\lambda \prod_{j=1}^n \frac{z-a_j}{1-\bar{a_j}z}, \quad |\lambda|=1, \quad |a_j|\neq 1, \, </math> сохраняют единичную окружность <math>\{|z|=1\}</math>, и сохраняют ориентацию на ней тогда и только тогда, когда вне единичного диска имеется чётное число точек <math>a_j</math>.

Подбором точек <math>a_j</math> можно добиться, чтобы ограничение отображения f на эту окружность было диффеоморфизмом с диофантовым числом вращения. Теорема Эрмана-Йоккоза утверждает в таком случае, что f аналитически сопряжено соответствующему повороту. Такое локальное сопряжение далее распространяется до границы содержащей единичную окружность компоненты Фату — оказывающейся, тем самым, кольцом Эрмана.

Примером реализации такой конструкции может служить рациональное отображение степени 3,

<math>

f(z) = e^{2 \pi i t}\cdot \frac{z^2(z - 4)}{1 - 4z}, </math> где константа <math>t=0.6151732\dots</math> выбирается так, чтобы число вращения ограничения f на единичную окружность равнялось бы <math>(\sqrt{5}-1)/2</math>.

Литература

  • Милнор, Дж. Голоморфная динамика. Вводные лекции. = Dynamics in One Complex Variable. Introductory Lectures. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — С. 189—194. — 320 с. — ISBN 5-93972-006-4