Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Papers

Материал из DSWiki
Перейти к навигацииПерейти к поиску

Foliations

  • Alexey Glutsyuk and Mikhail Lyubich. Unique ergodicity of horospheric foliations revisited.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², Ergodic Theory and Dynamical Systems, 28 (2008), no. 5, pp. 1533--1544.
  • B. Deroin, V. Kleptsyn, Random conformal dynamical systems, Geometry and Functional Analysis, 17 (2007), no. 4, pp. 1043-1105.

Attractors & time averages

  • Yu. Ilyashenko, A. Negut. Invisible parts of attractors. Nonlinearity 23 (2010) 1199—1219. [1]
  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.

Lyapunov exponents

  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics

  • B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionelle et régularité intermédiaire, preprint IHES M/05/24, Acta Mathematica, 199 (2007), pp. 199--262.
  • V. Kleptsyn, A. Navas, A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes, Moscow Math. Journal 8 (2008), no. 3, 477-492, 616.
  • B. Deroin, V. Kleptsyn, A. Navas, On the question of ergodicity for minimal group actions on the circle, Moscow Math. Journal, 9 (2009), no. 2, pp. 263--303.