Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Papers: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
мНет описания правки
мНет описания правки
Строка 1: Строка 1:
=== Foliations ===  
=== Foliations ===  
* Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited].
* Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited].
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544.
* B. Deroin, V. Kleptsyn, [http://arxiv.org/abs/math/0506204 Random conformal dynamical systems], ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105.
* B. Deroin, V. Kleptsyn, [http://arxiv.org/abs/math/0506204 Random conformal dynamical systems], ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105.
==== Foliations in <math>\mathbb{C}^2</math> ====
* D. Volk, [http://dx.doi.org/10.1134%2FS0081543806030072 The density of separatrix connections in the space of polynomial foliations in <math>\mathbb{C}P^2</math>], ''Proceedings of the Steklov Institute of Mathematics'' (2006), vol. 254, pp. 169-179 (Рус.: [http://denisvolk.com/math/ru/papers/seplink.pdf Плотность сепаратрисных связок в пространстве полиномиальных слоений в <math>\mathbb{C}P^2</math>], Нелинейные аналитические дифференциальные уравнения, Сборник статей, Тр. МИАН, 254, Наука, М., 2006, 181–191)
* D. Volk, [http://dx.doi.org/10.1134%2FS0081543806030072 The density of separatrix connections in the space of polynomial foliations in <math>\mathbb{C}P^2</math>], ''Proceedings of the Steklov Institute of Mathematics'' (2006), vol. 254, pp. 169-179 (Рус.: [http://denisvolk.com/math/ru/papers/seplink.pdf Плотность сепаратрисных связок в пространстве полиномиальных слоений в <math>\mathbb{C}P^2</math>], Нелинейные аналитические дифференциальные уравнения, Сборник статей, Тр. МИАН, 254, Наука, М., 2006, 181–191)
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of <math>\mathbb{C}^2</math>, ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544.


=== Attractors & time averages ===
=== Attractors & time averages ===
Строка 9: Строка 10:
* Yu. Ilyashenko, A. Negut, [http://wiki.dynsys.org/misc/NON-IN-final.pdf Invisible parts of attractors]. Nonlinearity '''23''' (2010) 1199—1219. [http://stacks.iop.org/Non/23/1199]
* Yu. Ilyashenko, A. Negut, [http://wiki.dynsys.org/misc/NON-IN-final.pdf Invisible parts of attractors]. Nonlinearity '''23''' (2010) 1199—1219. [http://stacks.iop.org/Non/23/1199]
* Yu. Ilyashenko, D. Volk, [http://denisvolk.com/math/en/papers/cascad_edit.pdf Cascades of <math>\varepsilon</math>-invisibility], Journal of Fixed Point Theory and Applications, 2010, 7, 161--188 (Рус.: [http://denisvolk.com/math/ru/papers/cascad_rus.pdf Каскады <math>\varepsilon</math>-невидимости])
* Yu. Ilyashenko, D. Volk, [http://denisvolk.com/math/en/papers/cascad_edit.pdf Cascades of <math>\varepsilon</math>-invisibility], Journal of Fixed Point Theory and Applications, 2010, 7, 161--188 (Рус.: [http://denisvolk.com/math/ru/papers/cascad_rus.pdf Каскады <math>\varepsilon</math>-невидимости])
 
==== Other examples of pathological attractors ====
* V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, ''Ergodic Theory and Dynamical Systems'', '''26''' (2006), no. 3, pp. 759-768.
* V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, ''Ergodic Theory and Dynamical Systems'', '''26''' (2006), no. 3, pp. 759-768.
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, ''Mathematical Notes'', '''82''' (2007), no. 5, pp. 678—689.
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, ''Mathematical Notes'', '''82''' (2007), no. 5, pp. 678—689.
==== Ittai Kan example ====
* Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. ''Journal of Fixed Point Theory and Applications'', '''3''' (2008), no. 2, pp. 449--463.
* Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. ''Journal of Fixed Point Theory and Applications'', '''3''' (2008), no. 2, pp. 449--463.



Версия от 08:40, 2 сентября 2010

Foliations

Foliations in <math>\mathbb{C}^2</math>

Attractors & time averages

Invisible attractors

Other examples of pathological attractors

  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.

Ittai Kan example

  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.

Lyapunov exponents

  • A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, Nonremovable Zero Lyapunov Exponents, Funkts. Anal. Prilozh., 39:1 (2005), 27–38
  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics

Slow-fast systems

Limit cycles

  • P. Kaleda, I. Schurov. Cyclicity of Elementary Polycycles with Fixed Singular Points Number in Generic k-Parametric Families. To appear in Algebra and Analysis (St. Petersburg Mathematical Journal) (Рус.: «Цикличность элементарных полициклов с фиксированным числом особых точек в типичных k-параметрических семействах».)