Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Доклад:13.9.2013: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
(Новая страница: «'''Hyperbolic groups''' 13.09.2013, ''Yves de Cornulier''; доклад состоится на совместном заседании семинара Лаб…»)
 
Нет описания правки
Строка 1: Строка 1:
'''Hyperbolic groups'''
'''Hyperbolic groups'''
(доклад состоится на совместном заседании семинара Лаборатории алгебраической геометрии ВШЭ и семинара по динамическим системам, в 17:00 на факультете математики ВШЭ, в ауд. 1001)


13.09.2013, ''Yves de Cornulier'';  
13.09.2013, ''Yves de Cornulier'';  
доклад состоится на совместном заседании семинара Лаборатории алгебраической геометрии ВШЭ и семинара по динамическим системам, в 17:00 на факультете математики ВШЭ, в ауд. 1001


I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group.
I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group.

Версия от 17:07, 21 сентября 2013

Hyperbolic groups

(доклад состоится на совместном заседании семинара Лаборатории алгебраической геометрии ВШЭ и семинара по динамическим системам, в 17:00 на факультете математики ВШЭ, в ауд. 1001)

13.09.2013, Yves de Cornulier;

I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group.