Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Участник:Ilya Schurov: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
(→‎Papers: +translation)
Строка 15: Строка 15:
== Papers ==
== Papers ==
* I. V. Schurov. [http://dx.doi.org/10.1007/s10883-010-9093-9 ''Ducks On The Torus: Existence and Uniqueness'']. Journal of Dynamical and Control Systems, '''16''':2 (2010), 267—300. Preprint: [http://arxiv.org/abs/0910.1888 arXiv:0910.1888v1 (math.DS)]
* I. V. Schurov. [http://dx.doi.org/10.1007/s10883-010-9093-9 ''Ducks On The Torus: Existence and Uniqueness'']. Journal of Dynamical and Control Systems, '''16''':2 (2010), 267—300. Preprint: [http://arxiv.org/abs/0910.1888 arXiv:0910.1888v1 (math.DS)]
* I. V. Schurov. ''Canard cycles in generic slow-fast systems on the two-torus.'' ”Transactions of the Moscow Mathematical Society”,  (Рус.: Щуров И.В. [http://ilya.schurov.com/f/nonconvex-ducks.pdf ''Уточные циклы в типичных быстро-медленных системах на торе.''], Труды ММО '''71''' (2010), 200-234)
* Щуров И.В. [http://dyn-sys.org/public/ducks-nonconvex-trudy.pdf ''Уточные циклы в типичных быстро-медленных системах на торе.''], Труды ММО '''71''' (2010), 200-234
* P. Kaleda, I. Schurov. ''Cyclicity of Elementary Polycycles with Fixed Singular Points Number in Generic k-Parametric Families''. To appear in ''Algebra and Analysis'' (''St. Petersburg Mathematical Journal'') (Рус.: «Цикличность элементарных полициклов с фиксированным числом особых точек в типичных k-параметрических семействах».)
** Translation: I. V. Shchurov. ''[http://www.ams.org/journals/mosc/2010-71-00/S0077-1554-2010-00184-7/home.html Canard cycles in generic fast-slow systems on the torus.]'' Transactions of the Moscow Mathematical Society, '''2010''', 175-207 [http://www.dyn-sys.org/public/ducks-nonconvex-trudy-en.pdf PDF]
* P. Kaleda, I. Schurov. ''Cyclicity of Elementary Polycycles with Fixed Singular Points Number in Generic k-Parametric Families''. ''Algebra and Analysis'' (''St. Petersburg Mathematical Journal'') (Рус.: П. И. Каледа, И. В. Щуров. [http://www.dyn-sys.org/public/kaleda-schurov-HA.pdf  «Цикличность элементарных полициклов с фиксированным числом особых точек в типичных k-параметрических семействах»]. Алгебра и анализ. '''22''':4 (2010), 57—75)
* I. V. Schurov. ''Duck farming on the two-torus: multiple canard cycles in generic slow-fast systems'', submitted to the proceedings for the Eighth AIMS International Conference on Dynamical Systems, Differential Equations and Applications, [http://arxiv.org/abs/1008.0133 arXiv:1008.0133 (Math.DS)].
* I. V. Schurov. ''Duck farming on the two-torus: multiple canard cycles in generic slow-fast systems'', submitted to the proceedings for the Eighth AIMS International Conference on Dynamical Systems, Differential Equations and Applications, [http://arxiv.org/abs/1008.0133 arXiv:1008.0133 (Math.DS)].



Версия от 15:09, 7 марта 2011

Scientific interests Dynamical systems: slow-fast systems, limit cycles, attractors.

Ph.D.

Education

  • 2006 — 2009. Moscow State University, Department of Mechanics and Mathematics. Ph.D. student. Differential equations, under supervision of Yulij Sergeevich Ilyashenko.
  • 2001 — 2006, Moscow State University, Department of Mechanics and Mathematics. Student. Graduated cum laude.

Papers

Conference talks

Scientific schools participation

Conference organization

Teaching experience

  • Junior mechanics and mathematics faculty («Малый мехмат МГУ»), 2001-2007, senior teacher.
  • Participation in Limit cycles special course in Independent University of Moscow (2 lectures), 2009.
  • Ordinary differential equations course in Math in Moscow program, Independent University of Moscow & State University — Higher School of Economics (jointly with Yury Kudryahov), Spring 2010.

Writings

  • Modern Illustrated Encyclopedia: Mathematics, Informatics. (Рус.: Современная Иллюстрированная Энциклопедия: Математика, Информатика. Росмэн, 2007. ISBN 978-5-353-02884-0.) Author of several articles on calculus, differential equations and discrete math. (See incomplete list here.)
  • Wikipedia, the free encyclopedia. Author of several articles on math and other topics (in Russian), see this automatically generated list.