Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Семинар в НМУ 2012-13: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
Нет описания правки
Нет описания правки
Строка 2: Строка 2:
: Число вращения, классификация Пуанкаре, теорема Данжуа, пример Данжуа, контроль искажения, действие группы диффеоморфизмов, показатели Ляпунова.
: Число вращения, классификация Пуанкаре, теорема Данжуа, пример Данжуа, контроль искажения, действие группы диффеоморфизмов, показатели Ляпунова.


;Нормальные формы (1 занятие)
;Нормальные формы (1-2 занятия)
: Линеаризация гиперболической особой точки на прямой. Теорема Пуанкаре-Дюлака.
: Метод последовательных приближений. Линеаризация гиперболической особой точки на прямой. Теорема Пуанкаре-Дюлака. КАМ-теория: гладкость сопряжения для диффеоморфизмов окружности.


; Полиномиальные уравнения в CP^2 (1 занятие — Алёша Глуцюк (?))
; Полиномиальные уравнения в CP^2 (1 занятие — Алёша Глуцюк (?))
Строка 10: Строка 10:
; Линейные системы с комплексным временем (1-2 занятия)
; Линейные системы с комплексным временем (1-2 занятия)
: Регулярные, фуксовы, иррегулярные особые точки. Уравнение Риккати. Ветвление решений. Монодромия. Теорема Левеля: нормальная форма фуксовой особой точки.
: Регулярные, фуксовы, иррегулярные особые точки. Уравнение Риккати. Ветвление решений. Монодромия. Теорема Левеля: нормальная форма фуксовой особой точки.
; Гиперболические системы (1-2 занятия)
: Устойчивое и неустойчивое слоения. Лемма об отслеживании. Условия конусов. Структурная устойчивость диффеоморфизмов Аносова. Гиперболические множества. Сохранение гиперболических множеств.
; Основы метрической теории динамических систем (2 занятия)
: Спектр. Перемешивание, эргодичность. Эргодическая теорема Бирхгофа-Хинчина. Энтропия. Вариационный принцип.
; Символическая динамика (2 занятия)
: Пространства символических последовательностей, сдвиг Бернулли, вдвиг Маркова, отображение судьбы, кодирование растягивающего эндоморфизма, Кодирование диффеоморфизма Аносова

Версия от 06:47, 6 июля 2012

Отображения окружности (2 занятия — Витя Клепцын)
Число вращения, классификация Пуанкаре, теорема Данжуа, пример Данжуа, контроль искажения, действие группы диффеоморфизмов, показатели Ляпунова.
Нормальные формы (1-2 занятия)
Метод последовательных приближений. Линеаризация гиперболической особой точки на прямой. Теорема Пуанкаре-Дюлака. КАМ-теория: гладкость сопряжения для диффеоморфизмов окружности.
Полиномиальные уравнения в CP^2 (1 занятие — Алёша Глуцюк (?))
Слоение, заданное полиномиальным уравнением в C^2, проективизация, бесконечно удаленная прямая, особые точки на бесконечно удалённой прямой, монодромия.
Линейные системы с комплексным временем (1-2 занятия)
Регулярные, фуксовы, иррегулярные особые точки. Уравнение Риккати. Ветвление решений. Монодромия. Теорема Левеля: нормальная форма фуксовой особой точки.
Гиперболические системы (1-2 занятия)
Устойчивое и неустойчивое слоения. Лемма об отслеживании. Условия конусов. Структурная устойчивость диффеоморфизмов Аносова. Гиперболические множества. Сохранение гиперболических множеств.
Основы метрической теории динамических систем (2 занятия)
Спектр. Перемешивание, эргодичность. Эргодическая теорема Бирхгофа-Хинчина. Энтропия. Вариационный принцип.
Символическая динамика (2 занятия)
Пространства символических последовательностей, сдвиг Бернулли, вдвиг Маркова, отображение судьбы, кодирование растягивающего эндоморфизма, Кодирование диффеоморфизма Аносова