Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Papers: различия между версиями
Материал из DSWiki
Перейти к навигацииПерейти к поиску
(→One-dimensional dynamics: + slow-fast) |
(→Slow-fast systems: +limit cycles) |
||
Строка 23: | Строка 23: | ||
* I. V. Schurov. [http://dx.doi.org/10.1007/s10883-010-9093-9 ''Ducks On The Torus: Existence and Uniqueness'']. Journal of Dynamical and Control Systems, '''16''':2 (2010), 267—300. Preprint: [http://arxiv.org/abs/0910.1888 arXiv:0910.1888v1 (math.DS)] | * I. V. Schurov. [http://dx.doi.org/10.1007/s10883-010-9093-9 ''Ducks On The Torus: Existence and Uniqueness'']. Journal of Dynamical and Control Systems, '''16''':2 (2010), 267—300. Preprint: [http://arxiv.org/abs/0910.1888 arXiv:0910.1888v1 (math.DS)] | ||
* I. V. Schurov. ''Canard cycles in generic slow-fast systems on the two-torus.'' To appear in ”Transactions of the Moscow Mathematical Society”, accepted in 2009. (Рус.: ''Уточные циклы в типичных быстро-медленных системах на торе.'') | * I. V. Schurov. ''Canard cycles in generic slow-fast systems on the two-torus.'' To appear in ”Transactions of the Moscow Mathematical Society”, accepted in 2009. (Рус.: ''Уточные циклы в типичных быстро-медленных системах на торе.'') | ||
=== Limit cycles === | |||
* P. Kaleda, I. Schurov. ''Cyclicity of Elementary Polycycles with Fixed Singular Points Number in Generic k-Parametric Families''. To appear in ''Algebra and Analysis'' (''St. Petersburg Mathematical Journal'') (Рус.: «Цикличность элементарных полициклов с фиксированным числом особых точек в типичных k-параметрических семействах».) |
Версия от 11:15, 13 июля 2010
Foliations
- Alexey Glutsyuk and Mikhail Lyubich. Unique ergodicity of horospheric foliations revisited.
- T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², Ergodic Theory and Dynamical Systems, 28 (2008), no. 5, pp. 1533--1544.
- B. Deroin, V. Kleptsyn, Random conformal dynamical systems, Geometry and Functional Analysis, 17 (2007), no. 4, pp. 1043-1105.
- D. Volk, D. The density of separatrix connections in the space of polynomial foliations in <math>\mathbb{C}P^2</math>, Proceedings of the Steklov Institute of Mathematics (2006), vol. 254, pp. 169-179
Attractors & time averages
- Yu. Ilyashenko, A. Negut. Invisible parts of attractors. Nonlinearity 23 (2010) 1199—1219. [1]
- V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
- T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
- Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.
Lyapunov exponents
- A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, Nonremovable Zero Lyapunov Exponents, Funkts. Anal. Prilozh., 39:1 (2005), 27–38
- V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.
One-dimensional dynamics
- B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionelle et régularité intermédiaire, preprint IHES M/05/24, Acta Mathematica, 199 (2007), pp. 199--262.
- V. Kleptsyn, A. Navas, A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes, Moscow Math. Journal 8 (2008), no. 3, 477-492, 616.
- B. Deroin, V. Kleptsyn, A. Navas, On the question of ergodicity for minimal group actions on the circle, Moscow Math. Journal, 9 (2009), no. 2, pp. 263--303.
Slow-fast systems
- I. V. Schurov. Ducks On The Torus: Existence and Uniqueness. Journal of Dynamical and Control Systems, 16:2 (2010), 267—300. Preprint: arXiv:0910.1888v1 (math.DS)
- I. V. Schurov. Canard cycles in generic slow-fast systems on the two-torus. To appear in ”Transactions of the Moscow Mathematical Society”, accepted in 2009. (Рус.: Уточные циклы в типичных быстро-медленных системах на торе.)
Limit cycles
- P. Kaleda, I. Schurov. Cyclicity of Elementary Polycycles with Fixed Singular Points Number in Generic k-Parametric Families. To appear in Algebra and Analysis (St. Petersburg Mathematical Journal) (Рус.: «Цикличность элементарных полициклов с фиксированным числом особых точек в типичных k-параметрических семействах».)