Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Papers: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
Строка 19: Строка 19:
* V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0704.1006 A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes], ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616.
* V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0704.1006 A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes], ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616.
* B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0806.1974 On the question of ergodicity for minimal group actions on the circle], ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303.
* B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0806.1974 On the question of ergodicity for minimal group actions on the circle], ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303.
=== Slow-fast systems ===
* I. V. Schurov. [http://dx.doi.org/10.1007/s10883-010-9093-9 ''Ducks On The Torus: Existence and Uniqueness'']. Journal of Dynamical and Control Systems, '''16''':2 (2010), 267—300. Preprint: [http://arxiv.org/abs/0910.1888 arXiv:0910.1888v1 (math.DS)]
* I. V. Schurov. ''Canard cycles in generic slow-fast systems on the two-torus.'' To appear in ”Transactions of the Moscow Mathematical Society”, accepted in 2009. (Рус.: ''Уточные циклы в типичных быстро-медленных системах на торе.'')

Версия от 11:14, 13 июля 2010

Foliations

  • Alexey Glutsyuk and Mikhail Lyubich. Unique ergodicity of horospheric foliations revisited.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², Ergodic Theory and Dynamical Systems, 28 (2008), no. 5, pp. 1533--1544.
  • B. Deroin, V. Kleptsyn, Random conformal dynamical systems, Geometry and Functional Analysis, 17 (2007), no. 4, pp. 1043-1105.
  • D. Volk, D. The density of separatrix connections in the space of polynomial foliations in <math>\mathbb{C}P^2</math>, Proceedings of the Steklov Institute of Mathematics (2006), vol. 254, pp. 169-179

Attractors & time averages

  • Yu. Ilyashenko, A. Negut. Invisible parts of attractors. Nonlinearity 23 (2010) 1199—1219. [1]
  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.

Lyapunov exponents

  • A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, Nonremovable Zero Lyapunov Exponents, Funkts. Anal. Prilozh., 39:1 (2005), 27–38
  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics

Slow-fast systems

  • I. V. Schurov. Ducks On The Torus: Existence and Uniqueness. Journal of Dynamical and Control Systems, 16:2 (2010), 267—300. Preprint: arXiv:0910.1888v1 (math.DS)
  • I. V. Schurov. Canard cycles in generic slow-fast systems on the two-torus. To appear in ”Transactions of the Moscow Mathematical Society”, accepted in 2009. (Рус.: Уточные циклы в типичных быстро-медленных системах на торе.)