Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Доклад:13.9.2013: различия между версиями
(Новая страница: «'''Hyperbolic groups''' 13.09.2013, ''Yves de Cornulier''; доклад состоится на совместном заседании семинара Лаб…») |
Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Hyperbolic groups''' | '''Hyperbolic groups''' | ||
(доклад состоится на совместном заседании семинара Лаборатории алгебраической геометрии ВШЭ и семинара по динамическим системам, в 17:00 на факультете математики ВШЭ, в ауд. 1001) | |||
13.09.2013, ''Yves de Cornulier''; | 13.09.2013, ''Yves de Cornulier''; | ||
I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group. | I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group. |
Версия от 17:07, 21 сентября 2013
Hyperbolic groups
(доклад состоится на совместном заседании семинара Лаборатории алгебраической геометрии ВШЭ и семинара по динамическим системам, в 17:00 на факультете математики ВШЭ, в ауд. 1001)
13.09.2013, Yves de Cornulier;
I will give a little panorama of hyperbolic spaces and group actions thereon. Introduced by Gromov in the late 80's as a far-reaching generalization of negatively curved manifolds, they now play an essential role in geometric group theory. They have remarkable applications, even beyond finitely generated groups; notably the recent discovery, by Cantat and Lamy, that the "Cremona group" of birational self-transformations of the plane is not a simple group.