Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Курсы в МГУ/Просеминар 2011: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
Нет описания правки
Строка 18: Строка 18:
Цель нашего просеминара — дать слушателям элементарное введение  в современную теорию динамических систем. '''Просеминар не предполагает никаких дополнительных знаний и доступен первокурсникам'''. Будет много задач, в том числе открытых проблем.
Цель нашего просеминара — дать слушателям элементарное введение  в современную теорию динамических систем. '''Просеминар не предполагает никаких дополнительных знаний и доступен первокурсникам'''. Будет много задач, в том числе открытых проблем.


<!--{{/21.10.2011}}-->
{{/18.11.2011}}


==Расписание==
==Расписание==

Версия от 01:11, 8 ноября 2011

Общая информация

Что
Просеминар для 1–2 курсов под руководством А. И. Буфетова, Н. Б. Гончарук, О. Л. Ромаскевич
Где
Аудитория 12-07 главного здания МГУ
Когда
По пятницам на 5-й паре (с 16:45)

О семинаре

  • Возможен ли надежный прогноз погоды?
  • Как движутся три тела под действием силы тяжести?
  • Зная первые 100 символов русского текста, с какой вероятностью можно предсказать 101-й?
  • Если бильярдный стол имеет форму треугольника, всегда ли можно запустить бильярдный шар так, чтобы его траектория была периодической?

Этими и многими другими вопросами занимается теория динамических систем. Возникшая в работах Пуанкаре по небесной механике чуть более 100 лет назад, эта теория применяется сегодня в самых разных областях математики: от теории чисел и комбинаторики до дифференциальной геометрии и математической физики.

Цель нашего просеминара — дать слушателям элементарное введение в современную теорию динамических систем. Просеминар не предполагает никаких дополнительных знаний и доступен первокурсникам. Будет много задач, в том числе открытых проблем.

Следующий доклад: В. Клепцын

Теория бифуркаций и общий взгляд на теорию динамических систем;

Бифуркация удвоения периода, бифуркация Андронова – Хопфа и универсальность Фейгенбаума

В этой и предыдущей лекции мы смотрим на теорию динамических систем «с птичьего полёта», попытавшись ответить на вопрос «а какие вообще бывают динамические системы?», но быстро от него перейдя к вопросу «а какие вообще бывают типичные динамические системы?». Мы займёмся теорией бифуркаций — исследованием изменений в качественном поведении динамической системы при постепенном изменении её параметров. Мы обсудим несколько самых простых бифуркаций — седлоузловую бифуркацию, бифуркацию удвоения периода и бифуркацию Андронова – Хопфа, и, в заключение, посмотрим на один исключительно красивый эффект в теории бифуркаций: универсальность Фейгенбаума.

Идеи, которые я буду рассказывать, достаточно сильно перекликаются с изложенными в брошюре Ю. С. Ильяшенко «Эволюционные процессы и философия общности положения».

Расписание

Дата Докладчик Тема Материалы
9 сентября 2011 А. И. Буфетов Задачи Список задач
16 сентября 2011 Н. Б. Гончарук Детерминированный хаос и судьбы точек Список задач
23 сентября 2011 Н. Б. Гончарук Детерминированный хаос и судьбы точек (продолжение)
30 сентября 2011 А. В. Клименко Марковское разбиение для отображения <math>\left(\begin{smallmatrix}2&1\\1&1\end{smallmatrix}\right)</math> на торе Список задач
7 октября 2011 В. А. Тиморин Множество Мандельброта Список задач
14 октября 2011 Н. Б. Гончарук Что такое динамические системы
21 октября 2011 Ю. Г. Кудряшов Векторные поля Список задач
28 октября 2011 Ю. Г. Кудряшов Векторные поля (продолжение)
11 ноября 2011 В. А. Клепцын Теория бифуркаций и общий взгляд на теорию динамических систем
28 ноября 2011 В. А. Клепцын Бифуркация удвоения периода, бифуркация Андронова--Хопфа и универсальность Фейгенбаума
25 декабря 2011 TBA
2 декабря 2011 TBA
9 декабря 2011 TBA
16 декабря 2011 Экзамен и чаепитие