Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Доклад:09.09.2010: различия между версиями
Ryzhov (обсуждение | вклад) (Created page with "Гипотеза. Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведе...") |
Ryzhov (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
Гипотеза. | '''Гипотеза.''' | ||
Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия. | Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия. | ||
Идея возможного доказательства. | '''Идея возможного доказательства.''' | ||
Поскольку малое возмущение косого произведения сопряжено с (близким к исходному) косым произведением, с помощью сопряжения можно переносить свойство Prop. с косого произведения на его возмущение. Однако отображение голономии сопряжения вдоль слоев оказывается лишь гельдеровым, а не абсолютно непрерывным. Поэтому теорема Фубини неприменима, и с помощью этого рассуждения можно переносить только топологические свойства. | Поскольку малое возмущение косого произведения сопряжено с (близким к исходному) косым произведением, с помощью сопряжения можно переносить свойство Prop. с косого произведения на его возмущение. Однако отображение голономии сопряжения вдоль слоев оказывается лишь гельдеровым, а не абсолютно непрерывным. Поэтому теорема Фубини неприменима, и с помощью этого рассуждения можно переносить только топологические свойства. | ||
Стратегия Ю.С.Ильяшенко и А.С.Городецкого заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено). | '''Стратегия Ю.С.Ильяшенко и А.С.Городецкого''' заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено). | ||
На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ("кошмар Фубини"). | На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ('''"кошмар Фубини"'''). |
Версия от 04:56, 18 сентября 2010
Гипотеза. Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия.
Идея возможного доказательства. Поскольку малое возмущение косого произведения сопряжено с (близким к исходному) косым произведением, с помощью сопряжения можно переносить свойство Prop. с косого произведения на его возмущение. Однако отображение голономии сопряжения вдоль слоев оказывается лишь гельдеровым, а не абсолютно непрерывным. Поэтому теорема Фубини неприменима, и с помощью этого рассуждения можно переносить только топологические свойства.
Стратегия Ю.С.Ильяшенко и А.С.Городецкого заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено).
На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ("кошмар Фубини").