Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Доклад:09.09.2010: различия между версиями
Ryzhov (обсуждение | вклад) Нет описания правки |
м (5 версий) |
||
(не показаны 3 промежуточные версии 1 участника) | |||
Строка 1: | Строка 1: | ||
''Юра Кудряшов'' | |||
'''Гипотеза.''' | '''Гипотеза.''' | ||
Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия. | Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия. | ||
Строка 7: | Строка 9: | ||
'''Стратегия Ю.С.Ильяшенко и А.С.Городецкого''' заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено). | '''Стратегия Ю.С.Ильяшенко и А.С.Городецкого''' заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено). | ||
На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ( | На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ("кошмар Фубини"). |
Текущая версия от 15:11, 24 октября 2012
Юра Кудряшов
Гипотеза. Пусть свойство Prop. выполняется для открытого множества в пространстве косых произведений на некотором многообразии. Тогда оно выполняется для открытого множества в пространстве (C^r-)гладких отображений этого многообразия.
Идея возможного доказательства. Поскольку малое возмущение косого произведения сопряжено с (близким к исходному) косым произведением, с помощью сопряжения можно переносить свойство Prop. с косого произведения на его возмущение. Однако отображение голономии сопряжения вдоль слоев оказывается лишь гельдеровым, а не абсолютно непрерывным. Поэтому теорема Фубини неприменима, и с помощью этого рассуждения можно переносить только топологические свойства.
Стратегия Ю.С.Ильяшенко и А.С.Городецкого заключается в том, чтобы, оценив константу Гельдера для сопряжения и хаусдорфову размерность исключительного множества для исходного косого произведения, воспользоваться леммой Фальконера и показать, что для возмущения размерность исключительного множества также отлична от полной (и, тем самым, метрическое свойство выполнено).
На семинаре обсуждена эта стратегия, а также разобран пример А.Б.Катка неприменимости теоремы Фубини в указанном выше случае ("кошмар Фубини").