Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Доклад:17.9.2010: различия между версиями
(Created page with ''''О консервативных гомоклинических бифуркациях''' ''Антон Городецкий'' В 70х годах Ш. Ньюхаус по…') |
м (2 версии) |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 1: | Строка 1: | ||
'''О консервативных гомоклинических бифуркациях''' | 17.9 '''О консервативных гомоклинических бифуркациях''' | ||
''Антон Городецкий'' | ''Антон Городецкий'' | ||
В 70х годах Ш. Ньюхаус показал, что в результате типичной гомоклинической бифуркации гладкого диффеоморфизма поверхности образуются устойчивые гомоклинические касания, бесконечное число аттракторов (или репеллеров) и другие неожиданные явления (известные теперь как «явления Ньюхауса»). Более чем 20 лет спустя П. Дуарте доказал аналогичные результаты в консервативном случае (с заменой аттракторов на эллиптические периодические точки). Оказывается, теорему Дуарте можно усилить и показать, что консервативные гомоклинические бифуркации порождают также гиперболические множества большой хаусдорфовой размерности. Мы обсудим этот факт и его приложения к небесной механике (это совместная работа с В. Калошиным) и динамике стандартного отображения (иначе известого как отображение Чирикова). | В 70х годах Ш. Ньюхаус показал, что в результате типичной гомоклинической бифуркации гладкого диффеоморфизма поверхности образуются устойчивые гомоклинические касания, бесконечное число аттракторов (или репеллеров) и другие неожиданные явления (известные теперь как «явления Ньюхауса»). Более чем 20 лет спустя П. Дуарте доказал аналогичные результаты в консервативном случае (с заменой аттракторов на эллиптические периодические точки). Оказывается, теорему Дуарте можно усилить и показать, что консервативные гомоклинические бифуркации порождают также гиперболические множества большой хаусдорфовой размерности. Мы обсудим этот факт и его приложения к небесной механике (это совместная работа с В. Калошиным) и динамике стандартного отображения (иначе известого как отображение Чирикова). |
Текущая версия от 15:02, 24 октября 2012
17.9 О консервативных гомоклинических бифуркациях
Антон Городецкий
В 70х годах Ш. Ньюхаус показал, что в результате типичной гомоклинической бифуркации гладкого диффеоморфизма поверхности образуются устойчивые гомоклинические касания, бесконечное число аттракторов (или репеллеров) и другие неожиданные явления (известные теперь как «явления Ньюхауса»). Более чем 20 лет спустя П. Дуарте доказал аналогичные результаты в консервативном случае (с заменой аттракторов на эллиптические периодические точки). Оказывается, теорему Дуарте можно усилить и показать, что консервативные гомоклинические бифуркации порождают также гиперболические множества большой хаусдорфовой размерности. Мы обсудим этот факт и его приложения к небесной механике (это совместная работа с В. Калошиным) и динамике стандартного отображения (иначе известого как отображение Чирикова).