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Abstract. Consider a germ of a holomorphic vector field at the
origin on the coordinate complex plane. This germ is called a
saddle-node if the origin is its singular point, one of its eigenvalues
at zero is zero, and the other is not. A saddle-node germ is real
if its restriction to the real plane is real. The monodromy trans-
formation for this germ has a multiplier at zero equal to 1. The
germ of this map is parabolic and admits a ”normalizing cochain”.
In this note we express the Dulac map of any real saddle-node up
to a left composition with a real germ (C, 0)→ (C, 0) through one
component of the cochain normalizing the monodromy transfor-
mation.
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1. Introduction

In 1981 Voronin [V], Ecalle [E], and Malgrange [M] discovered
functional invariants of the analytic classification of parabolic germs
(C, 0) → (C, 0), that is, the germs with the linear part the identity.
These invariants are now called Ecalle-Voronin moduli (Malgrange in
the title of his talk [M] at the Bourbaki seminar referred to Ecalle,
though his approach was different). In words of Arnold (oral com-
munication) this discovery revolutionized the theory of normal forms.
The effect discovered is called “Nonlinear Stokes Phenomena”, see for
instance the book [I2]. In the last decades this phenomenon was investi-
gated by Christopher, Glutsyuk, Loray, Mardesic, Roussarie, Rousseau,
Shishikura and others, see [G], [LTV], [MRR], [RC], [S] and many more.

Martinet and Ramis [MR] gave an analytic classification of complex
saddle nodes (germs of vector fields in (C2, 0) with one zero and one
non-zero eigenvalue). The Martinet–Ramis moduli of this classification
are at the same time Ecalle-Voronin moduli of the monodromy map of
the saddle-node. (The definition of the monodromy map as well as the
other special terms of the Introduction are recalled in the next section.)
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This paper is devoted to the study of the Dulac map of a real saddle-
node. The formula for this map, based on [MR], may be found in [I1],
see formula (10) below. This formula contains three factors. For the
non-real saddle-nodes the third factor (counted from the right) may
be eliminated by a non-real coordinate change in the target. For the
real saddle-nodes only real coordinate changes are admitted. The third
factor remains non-trivial, though not uniquely determined. Seemingly,
the first and the third factors are quite independent. The present paper
shows that for real saddle-nodes there is a quite unexpected relation
between the two factors, and the whole product may be in a sense
reconstructed from the last factor.

Real saddle-nodes are the only elementary non-hyperbolic singular
points of real vector fields. By the desingularization theorem, any iso-
lated singular point of a planar analytic vector field may be split to a
finite number of elementary ones by a finite number of blowing ups.
So the elementary singular points play a role of physical elements in
building of the boundless variety of the phase portraits of planar vector
fields. Therefore every new property of saddle-nodes is important for
the qualitative theory of differential equations as a whole. Moreover,
Dulac maps of real saddle-nodes are crucial for the theory of the mon-
odromy maps of real analytic polycycles, see [I1]. One may expect that
the relations found in this paper may be applied to this theory, though
right now these applications are not found.

2. Preliminaries and main results

2.1. The monodromy map and its formal normal form. Con-
sider a saddle-node germ v of a vector field at a singular point 0 in
C2 with the eigenvalues µ = 0 6= λ. As mentioned above, this germ is
called a saddle-node. If v|R2 is real then the saddle-node is real.

Choosing an appropriate coordinate and time change, one can write
a saddle-node vector field in the form

(1) ẋ = ±xk+1 + . . . , ẏ = −y . . . ,
dots replace the higher order terms. We consider those saddle-nodes
for which the Dulac map is well defined, see Figure 1 and definitions
below. For such vector fields the first equation in (1) has the form

ẋ = xk+1 + . . .

Any complex saddle-node has an invariant manifold, a holomorphic
curve tangent at zero to the eigenvector of the linearization of the germ
with the non-zero eigenvalue. A positive circuit of zero on this manifold
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Figure 1. Dulac map of a real saddle-node

generates the monodromy map of this saddle-node denoted by m. This
m is a parabolic germ: m(0) = 0,m′(0) = 1. Its formal normal form is

(2) m0 = g−2πi
wk,a

, wk,a =
zk+1

1 + azk
∂

∂z

for some k ∈ N, and a ∈ C. For a real saddle-node a is real. Here gtw is
the time t shift along the orbits of the vector field w (in other words,
gtw is the time t phase flow transformation of the vector field w).

Important for the future applications is the rectifying chart of this
field:

(3) tk,a = − 1

kzk
+ a ln z.

Mention here that in [I1] a similar function is permanently used:
hk,a = −1/tk,a.

2.2. The Dulac map. A real saddle-node v has a common separatrix
of the two hyperbolic sectors that is not in general analytic at zero,
see Fig 1. We can always choose the holomorphic invariant manifold
as the w axis. Let Γ+ be a cross-section w = 1 with the z coordinate
on it, and Γ− = {z = c} be another cross-section. Changing the scale
we can always achieve that the vector field v is well defined on these
cross-sections. The map ∆ : Γ+ → Γ− along the orbits of v is called
the Dulac map of the saddle-node v, see Figure 1.
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Figure 2. Sectorial normalization Hu and the Dulac
map of a complex saddle-node

The following figure illustrates the Dulac map of a real saddle-node
in the complex plane and formula (10) for this map. A detailed com-
mentary to this figure is given in Section 2.6.

Our main goal is stated in the following theorem; the special terms
used there will be explained below in this section.

Theorem 1. The Dulac map for the real saddle-node may be expressed
through the so called normalizing cochain for the monodromy map and
the formal normal form of this map.

The more explicit expression is presented below.
Recall some definitions.

2.3. Normalizing cochains. The formal series that conjugates a par-
abolic germ m with its formal normal form m0, see (2), do diverge in
general. The object that conjugates m and m0 is a so called normalizing
cochain that we now describe.

Definition 1. A nice k-covering of a punctured disc D∗ε = {z : 0 <
|z| < ε} is a covering of D∗ε by sectors

Sj = {z : |z| < δ,

∣∣∣∣arg z − π

2k
− πj

k

∣∣∣∣ < α. α ∈
( π

2k
,
π

k

)
};

the larger α is, the smaller is ε.

Definition 2. A normalizing cochain F = Fnorm for a germ m with
the formal normal form (2) is a tuple of holomorphic maps Fj such
that :

any Fj is defined in some sector Sj of the nice k-covering of the
punctured disc;
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all the Fj have the same asymptotic Taylor series at 0 that coincides
with the formal series that formally conjugates m and m0;
F conjugates m and m0 analytically:

m0 ◦ F = F ◦m
whenever defined.

2.4. Ecalle-Voronin and Martinet-Ramis moduli. The sectors
Sj, Sj+1 and S2k, S1 overlap; in their pairwise intersection a compo-
sitional coboundary of F = Fnorm is defined:

(4) δF = {Fj ◦ F−1
j−1, j = 2, ..., 2k;F1 ◦ F−1

2k }
The compositional coboundary of the normalizing cochain, up to a

simple equivalence relation that we skip, is the modulus of the analytic
classification of the parabolic germs. It is called the Ecalle-Voronin
modulus. The Ecalle-Voronin modulus of the monodromy transforma-
tion of a complex saddle-node is the modulus of the analytic classifiac-
tion of complex saddle-nodes; it is called the Martinet-Ramis modulus.

The main objects for the description of the Dulac map for a saddle-
node are the components F1 and F2k of the normalizing cochain and
their compositional ratio. The sectors S1 and S2k both contain a germ
(R+, 0) . The bisector of the sector S1(S2k) is located above (below)
the R+ semiaxis. For this reason we redenote:

F1 = F u
norm, F2k = F l

norm;

u and l stand for upper and lower. Sometimes we write F u, F l instead
of F u

norm, F
l
norm.

At this spot we recall the main ingredient in the construction of the
Ecalle–Voronin moduli. As mentioned above, these moduli are com-
positional coboundaries of the normalizing cochains. Namely, in the
intersection of two adjacent sectors of the nice k-covering, we consider
a compositional ratio of the components of the cochain corresponding
to these sectors. Let us describe one component of the coboundary
equal to F u ◦ (F l)−1. The components F u, F l conjugate the germ m to
m0. Let F̃ u, F̃ l, m̃, m̃0 be the germs F u, F l,m,m0 written in the recti-
fying chart ta,k: F̃

u = ta,k ◦F u◦t−1
a,k, and so on. These are now germs at

infinity. The germ m̃0 is simply a shift ζ → ζ−2πi. The germs F̃ u and
F̃ l both conjugate m̃ to m̃0. Hence, their quotient, δ0 = F̃ u ◦ (F̃ l)−1

conjugates m̃0 to itself, that is, commutes with m̃0. Hence,

δ0 = ζ + a0 +
∞∑
1

an expnζ
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in some left halfplane

C−b = {ζ : Reζ < b < 0}.

The Martinet-Ramis modulus consists of the compositional cobound-
ary of the normalizing cochain F for the monodromy map m. This
coboundary belong to a special functional space M that we do not
describe here. We mention only that any element of this space may
be realized as a functional invariant for some parabolic germ of a map
(C, 0)→ (C, 0). On the contrary, not any element fromM may be re-
alized as a Martinet-Ramis modulus, but rather that one that satisfies
what may be called Martinet-Ramis restrictions. Equality a0 = 0 in
the formula for δ0 is an example of these restrictions. In the description
of the Dulac map we need only that component of the compositional
coboundary of F that is defined in a sector that contains the germ
(R+, 0); this germ belongs to the crosse-section Γ+.

So, according to the Martinet-Ramis theory, there is no free term
in the series for δ0, see the original paper [MR], or the survey [I2]
(Corollary 2 in Section 3.4). Finally,

(5) F u ◦ (F l)−1 = (tk,a)
−1 ◦ δ0 ◦ tk,a,

(6) δ0 = ζ +
∞∑
1

an expnζ.

Note that δ0 − ζ is 2πi-periodic, and δ0 commutes with the shift
ζ → ζ − 2πi. The germ δ0 is a part (better to say, a component) of the
Martinet-Ramis modulus. The difference δ0 − ζ is 2πi periodic; hence,
the corresponding series converges in the left halfplane.

2.5. Classes of real equivalence. Our goal is to express the Dulac
map of a real saddle-node through Fnorm and the formal normal form of
the saddle-node. There is no chance to do this explicitly, because there
is no preferred chart on the image cross-section. For a real saddle-node
this chart is defined up to a left composition with a real holomorphic
germ.

This motivates the following definition.

Definition 3. Two germs f and g on the positive real axis holomorphic
at 0 are (left) real equivalent if

(7) f = h ◦ g, h : (R+, 0)→ (R+, 0).
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We stress that the germs are considered at zero on the positive real
axis. Our goal now is to find the class of real equivalence of the germ
gu.

Let S be the operator of complex conjugacy:

(8) (Sf)(z) = f(z̄)

Proposition 1. Two germs f and g are (left) real equivalent iff

(9) I := f−1 ◦ Sf = g−1 ◦ Sg.

Proof. If f = h ◦ g, then Sf = h ◦ Sg, and

f−1 ◦ Sf = g−1 ◦ h−1 ◦ h ◦ Sg = g−1 ◦ Sg,
If (9) holds, then

h = g ◦ f−1 = Sg ◦ (Sf)−1 = S(g ◦ f−1) = Sh.

Hence, h is real. �

Definition 4. The germ f−1 ◦ Sf is called the invariant of the class
of the real equivalence of f .

2.6. Improved versions of Theorem 1. The Dulac map of any com-
plex saddle-node has the form [I]:

(10) ∆ = gu ◦∆st ◦ F u = gl ◦∆st ◦ F l

where gu and gl are holomorphic germs, F u and F l are defined above,
and ∆st is the Dulac map for the system

(11) ż =
zk+1

1 + azk
, ẇ = −w.

The system (11) is the formal orbital normal form for v. Changing
the scale on Γ− : w → cw, one may achieve that

(12) ∆st = exp ◦tk,a,
see Figure 2. The sectorial normalization Hu conjugates the original
vector field with a standard one in some domain that contains a germ
of an open real right halfplane at zero. The map Hu brings a horizontal
sector w = const that contains Γ+ to a curvilinear sector. The map π
along the orbits of the normalized vector field brings the latter sector to
a horizontal one. The map π◦Hu|Γ+ is normalizing for the monodromy
transformation; it is a component F u of the normalizing cochain. The
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map Hu brings a vertical disc z = const that contains Γ− to another
vertical disc. The map g = gu equals to (Hu)−1 restricted to the second
disc.

For a real saddle-node ,

F l = SF u, gl = Sgu.

This easily follows from Appendix II to Theorem 2 in [I].

Theorem 2. Let v be a real saddle-node formally orbitally equivalent
to the germ (11). Let

F u ◦ (SF u)−1 = t−1
k,a ◦ δ0 ◦ tk,a,

where SF u = F l is from (5), δ0 has the form (6), and tk,a is from (3).
Then the invariant of the class of R-equivalence of the germ gu is equal
to

(gu)−1 ◦ (Sgu) = exp ◦δ0 ◦ ln .

We call the germ

δ̃0 = exp ◦δ0 ◦ ln

the renormalized Martinet-Ramis modulus.
It is a parabolic germ (C, 0)→ C, 0) : δ̃′0(0) = 1, as proved below.

Theorem 3. Let the renormalized Martinet-Ramis modulus of a
saddle-node germ v admit a compositional square root extraction:

δ̃0 = j ◦ j, j : (C, 0)→ C, 0), j′(0) = 1.

Then the factor gu in (10) is real equivalent to Sj. In other words, in
an appropriate real chart on the image cross-section, the Dulac map of
v equals

∆ = Sj ◦∆st ◦ F u.

Definition 5. A saddle-node v is absolutely real if F u ≡ F l on (R+, 0).

Corrolary 1. Let v be a germ of an absolutely real saddle-node . Then
in an appropriate real chart on the image cross-section the Dulac map
for v has the form

(13) ∆ = ∆st ◦ F u
norm = ∆st ◦ F l

norm.

Proof. For the absolutely real saddle-node δ0 = id . Hence, (gu)−1 ◦
(Sgu) = id , and the identity belongs to the left R-equivalence class of
gu. �

We can now find a formal representative of the R-equivalence class
of gu.
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Any parabolic germ f : (C, 0)→ (C, 0) admits a formal square root
extraction:

[f ] = [j] ◦ [j],

where [f ] is a convergent Taylor series for the germ f , and [j] is a formal
Taylor series with the linear part identity, divergent in general. Indeed,
a formal normal form of a parabolic germ is a phase flow transforma-
tion, and such a transformation admits a compositional root extraction
of any degree. On the contrary, the set of parabolic germs that admit a
holomorphic square root extraction has in a sense codimension infinity.
Indeed, the Ecalle-Voronin modulus for such germs have to commute
not only with a shift by 2πi, but rather by πi, see [V] for details.

Theorem 4. Let [j] be a formal Taylor series, compositional square

root of [δ̃0], divergent in general:

[δ̃0] = [j] ◦ [j].

Then there exists a real formal series [h], also divergent in general,
such that in formula (10)

[gu] = [h] ◦ [Sj].

3. Proofs of the main theorems

3.1. Proof of Theorem 2. By (10) we have

gu ◦∆st ◦ F u = gl ◦∆st ◦ F l.

But for real saddle-nodes,

gl = Sgu, F l = SF u.

Hence,
(gu)−1 ◦ (Sgu) = ∆st ◦ F u ◦ (SF u)−1 ◦ (∆st)

−1.

But
∆st = exp ◦tk,a, F u ◦ (SF u)−1 = (tk,a)

−1 ◦ δ0 ◦ tk,a.
Hence

(gu)−1 ◦ (Sgu) = exp ◦δ0 ◦ ln .

Theorem 2 is proved.

Remark 1. The map δ0 − ζ is expressed as an exponential series (6)
with a zero free term. Hence,

exp ◦δ0 ◦ ln = ζ exp
∞∑
1

anζ
n,

the series in the r. h. s. converges at zero. This germ is holomorphic
at zero and parabolic, as claimed after the statement of Theorem 2.
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3.2. Proof of Theorem 3. The invariants of classes of real equiva-
lence are anti-real in the following sense.

Definition 6. A germ I : (C, 0)→ (C, 0) is anti-real if SI = I−1.

The reason for the name is that the conjugate of the real germ is the
same germ, and for the anti-real germ it is the inverse germ.

Example 1. The monodromy map of a real saddle-node is anti-real.
Indeed, the complex conjugacy map of the plane brings the monodromy
map of the saddle-node to a complex conjugate one. At the same time,
this is a monodromy map that corresponds to the same loop, but oppo-
sitely oriented. Hence, the conjugate to the original monodromy map
is inverse to it, see [I] for details.

Note that the invariants of the classes of R-equivalence are anti-real.
Indeed, if I = f−1 ◦ Sf , then

SI = (Sf)−1 ◦ f = I−1.

Here we used the obvious relation: S(f−1) = (Sf)−1.

Lemma 1. Suppose that an anti-real parabolic germ admits a compo-
sitional square root extraction. Then it is the invariant of the class of
real equivalence of its conjugated square root.

Proof. Let I = j ◦ j. Then I is the invariant of the class of real
equivalence of the germ Sj. Indeed, by assumption, SI = I−1. Hence,
Sj◦Sj = j−1◦j−1. As the square root extraction is unique, we conclude
that j is anti-real as well. Hence, (Sj)−1 ◦ j = j ◦ j = I. �

By assusmption of Theorem 3, δ̃0 satisfies the assumption of the
lemma. Let j◦j = δ̃0. Then Sj belongs to the class of the R-equivalence
of gu. This proves Theorem 3.

The proof of Theorem 4 follows the same lines as that of Theorem
3, only the holomorphic germs are replaced by formal series.

4. An inverse problem for classes of R-equivalence

A natural question arises: is any anti-real germ an invariant of some
class of left real equivalence?

Theorem 5. Any anti-real parabolic germ is an invariant of some
class of left real equivalence of some holomorphic germ with a positive
derivative.

I could not find a proof of this statement in frame of the theory of
one-dimensional germs. The theorem is proved below with the use of all
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the above constructions. Namely, given an anti-real germ we construct
a saddle-node whose Martinet-Ramis modulus is related to the given
anti-real germ as above. Then the germ gu will be the desired one.

Proof. Consider the class of the saddle-nodes with the orbital formal
normal form

(14) ż = z2, ẇ = −w.

The rectifying map for the vector field z2 is t1,0 = −1
z
. Now consider

the given anti-real parabolic germ I = ζ +
∑∞

2 anζ
n. Take

δ0 = ln ◦I ◦ exp = ln(exp ζ +
∞∑
2

an expnζ) =

ζ + ln(1 +
∞∑
2

an exp(n− 1)ζ) = ζ +
∞∑
1

bn expnζ.

By the realization theorem for the Martinet-Ramis moduli, there ex-
ists a real germ v formally orbitally equivalent to (14) for which the
normalizing cochain of the monodromy map has the properties:

F u = SF l, F u ◦ (F l)−1 = t−1
1,0 ◦ δ0 ◦ t1,0.

For this saddle-node

∆ = gu ◦∆st ◦ F u, ∆st = exp

(
−1

z

)
,

and

(gu)−1 ◦ Sgu = exp ◦δ0 ◦ ln = I.

The derivative (gu)′(0) is positive by the Appendix II to Theorem 2 in
[I]. �

It is interesting to note that the class of real equivalence thus con-
structed does not depend on the choice of the formal normal form (11).
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